TOWARD COMPREHENSIVENESS: INCREASED MOLECULAR SAMPLING WITHIN CYPRAEIDAE AND ITS PHYLOGENETIC IMPLICATIONS

Christopher P. Meyer

Florida Museum of Natural History, University of Florida, Gainesville, Florida 32611 USA; cmeyer@flmnh.ufl.edu

ABSTRACT

This paper introduces 73 additional taxa to the existing mitochondrial molecular database of 202 taxa for the Cypraeidae and addresses the systematic implications of their inclusion. Five outgroup members from the Ovulidae are also added. Sequence data are included from all previously missing extant named genera (Propustularia, Barycypraea and Schilderia), completing the overall "generic-level" framework for living cowries. Newly added taxa include 47 recognized species, 25 subspecies, and six undescribed taxa. Phylogenetic results generally are consistent with previous arrangements, with few minor adjustments. The most significant findings are that: (1) currently recognized Nesiocypraea is broken into two disparate clades, a deeply rooting Nesiocypraea sensu stricto group and the more derived Austrasiatica (Lorenz, 1989). (2) Two newly included Barycypraea taxa are sister to Zoila, reaffirming the validity of the subfamilial clade Bernayinae. (3) The inclusion of a significant number of added Erroneini taxa (N = 24) creates a phylogenetic challenge because of poor support and recovered relationships inconsistent at first glance with traditionally recognized affinities. In order to maintain nomenclatural consistency, Erronea is maintained at a generic level, whereas Adusta is dropped to subgeneric status within Erronea. Greater than 90% of currently recognized species are included, and 93% of these are supported by molecular criteria. Moreover, more than 70% of the tested, recognized subspecies are distinct. The phylogeny provides one of the most comprehensive, species-level frameworks to date for testing diversification theories in the marine tropics.

Key words: Cypraeidae, molecular systematics, taxon sampling, Cypraea.

INTRODUCTION

Cowries (Gastropoda: Cypraeidae) are taxonomically one of the best known of all molluscan groups, and have been used frequently to examine speciation and biogeographic patterns in the marine tropics (Schilder, 1965, 1969; Foin, 1976; Kay, 1984, 1990; Meyer, 2003). A wealth of taxonomic (Schilder & Schilder, 1938, 1971; Schilder, 1939; Lorenz & Hubert, 1993; Groves, 1994; Lorenz, 2002), anatomical (Troschel, 1863; Vayssière, 1923, 1927; Riese, 1931; Risbec, 1937; Schilder, 1936; Kay, 1957, 1960, 1963, 1985, 1996; Bradner & Kay, 1996; Lorenz, 2000), biogeographic (Schilder, 1965, 1969; Foin, 1976; Burgess, 1985; Liltved, 1989; Lorenz & Hubert, 1993; Lorenz, 2002) and fossil data (Schilder & Schilder, 1971; Kay, 1990, 1996; Groves, 1994) is available for the group; however, what has been lacking is a well-resolved, comprehensive species-level phylogeny. These phylogenetic hypotheses of relationship establish sister pairs at the appropriate taxonomic level and provide the framework to test diversification theories. Meyer (2003) introduced molecular data for 234 taxa in Cypraeidae and generated phylogenetic hypotheses for most major clades as well as sister-group relationships for most species. Systematics for Cypraeidae were reviewed in light of the results and diversification patterns within the tropics were addressed. The study presented herein significantly increases the comprehensiveness of taxon sampling in the group by introducing 73 Cypraeidae and five Ovulidae taxa to the existing molecular dataset and discusses their systematic implications. In addition to broader taxonomic sampling, this paper presents the results of broader geographic sampling. The appendix lists 147 localities added across the various taxa. Five outgroup taxa from six localities are included, and 67 recognized cypraeid species or subspecies are added from 75 localities. The remaining 66 localities were added to supposedly known taxa, but revealed six previously unrecognized taxa, some of which may correspond to names currently in synonymy upon review of type localities.

MATERIALS AND METHODS

Recognition Criteria: ESU versus OTU

The ultimate goal of this project is to construct a comprehensive phylogeny of cypraeid gastropods at the appropriate level for diversification studies. As such, the operational taxonomic unit (OTU) chosen for phylogenetic analyses generally represents an evolutionarily significant unit (ESU) that must fulfill some minimal criteria established through genetic scrutiny. First, mtDNA haplotypes of sampled individuals must represent a monophyletic clade; yet this alone is not sufficient, because any phylogeny has a plethora of monophyletic groups, because a clade requires only two individuals. Thus, auxiliary criteria are required to delineate significant units. Within cowries, these additional criteria are (1) geographic distinction or allopatry, (2) significant genetic distance from the sister group such that pairwise distance comparisons yield a bimodal distribution, and/or (3) taxonomic recognition by previous workers. An OTU is included in analyses only if at least two of these three criteria are met. Most OTUs fulfill all three criteria and are considered evolutionarily significant units (ESUs) (sensu Moritz, 1994). These criteria are erected in order to delineate independent evolutionary trajectories, but do not guarantee that the units are reproductively isolated. In a few instances, two of the three criteria (genetic separation and taxonomic recognition) are not supported by the third (exclusive geographic signatures). While the genetic differences (monophyly) between populations indicate some independent period of evolutionary history between geographic regions, it appears that, on occasion, haplotypes from outlying regions can mix back into the sister gene pool. The few cases where all three criteria are not fulfilled always occur on the periphery of regions (e.g., Marguesas, Hawaii) and show asymmetrical, "downstream", dispersal events (Fig. 1). As circumscribed, all ESUs discussed indicate independent evolutionary histories, but alternative criteria, such as either nuclear markers or breeding experiments, are needed to verify reproductive isolation.

Molecular Methods

Most methods follow protocols detailed in Meyer (2003) for all aspects of preservation, extraction, amplification, and sequencing. Tissue samples were acquired from a variety of

FIG. 1. ESU vs. OTU criteria. Phylogram showing the relationships among members of the Pacific Cribrarula subclade, with bootstrap values for major groups. Four distinct clades are evident, and the names presented on the right: Cribrarula catholicorum, C. gaskoini, C. astaryi, and C. cumingii. Note that single individuals of two newly included taxa, C. taitae and C. garciai (white stars), nest within two of the major clades and show little variation (a single mutation). These two new taxa are introduced as OTUs, because of their distinct morphology and geography (American Samoa and Easter Island, respectively), but are currently not considered ESUs by molecular criteria. All individuals from the Marquesas are C. astaryi; however, two individuals of C. cumingii possess haplotypes belonging to the C. astaryi clade as well (dark stars). While the two haplotype clusters are distinct, the pattern indicates uni-directional exchange of larvae downstream from the Marquesas (C. astaryi). Molecular criteria recognize these two clades as ESUs with historically limited exchange. (TIK = Tikehau, RR = Rangiroa, HUA = Huahine, all C. astaryi from Marquesas, all C. gaskoini from Hawaii, and all C. catholicorum from Solomon Islands)

sources and locations (listed in the acknowledgements and appendix). Most samples were preserved in 95% ethanol. DNA extraction was performed using DNAzol (Chomczynski et al., 1997) using one-half volumes and following the manufacturer's protocol (Molecular Research Center, Inc.) with the exception that the digestion step was increased by an additional 24 or 48 h. PCR was performed as described in Meyer (2003). COI primers were as follow (from Folmer et al., 1994): LCO-1490 (5'-3') GGT CAA CAA ATC ATA AAG ATA TTG G, and HCO-2198 (5'-3') TAA ACT TCA GGG TGA CCA AAA ATC A. For problematic taxa, these primers were degenerated as follows: dgLCO-1490 (5'-3') GGT CAA CAA ATC ATA AAG AYA TYG G, and dgHCO-2198 (5'-3') TAA ACT TCA GGG TGA CCA AAR AAY CA. Two internal primers were designed for small amplifications of degraded DNA: InCypLCO (5'-3') CGT YTA AAT AAT ATA AGY TTY TG, and InCypHCO (5'-3') CGT ATA TTA ATA ATT GTT GTA AT. Palumbi's (1996) 16Sar and 16Sbr primers were used for 16S: 16Sar (5'-3') CGC CTG TTT ATC AAA AAC AT, and 16Sbr (5'-3') CCG GTC TGAACT CAG ATC ACG T. Two internal primers were designed for small amplifications of degraded DNA: In16Sar (5'-3') GGG CTA GTA TGAATG GTT TGA, and In16Sbr (5'-3') ATG CTG TTA TCC CTATGG TAACT. The polymerase chain reaction was carried out in 50 µl volumes, using 1 µl of template. Each reaction included 5 µI 10X PCR buffer, 5 µI dNTPs (10mM stock), 2 µl of each primer (10µM stock), 3 µl MgCl₂ solution (25 mM stock), 0.2 µl Taq (5 Units/µl stock) and 31.8 µl ddH₂O. Reactions were run for 35-40 cycles with the following parameters: an initial one min denaturation at 95°C; then cycled at 95°C for 40 sec (denaturation), 40°C to 44°C (COI) or 50°C to 54°C (16S) for 40 sec (annealing), and 72°C for 60 sec (extension). Successfully amplified products were cleaned for cycle sequencing using Wizard[®] PCR Preps (Promega). Sequencing also followed Meyer (2003) with all new sequences generated using ABI chemistry and sequencers. Sequences were generated from the resulting electrophenograms using Sequencher (Gene Codes).

All primer sequences, aligned COI and 16S sequences and Nexus files are available at the archived data web pages of the Florida Museum of Natural History Malacology Department (http://www.flmnh.ufl.edu/malacology/ archdata/Meyer2004), and new sequences are deposited in Genbank under accession numbers AY534351 through AY534503.

Phylogenetic Analyses

The 297 operational taxonomic units (OTUs) presented in this paper were selected from an extensive database comprised of over 2,000 sequenced individuals. In general, taxa are included if they exhibit distinctive geographic and/or genetic signatures. In most instances, new OTUs are recognized in the literature as either species (N = 47) or subspecies (N = 25). This paper introduces six previously unrecognized taxa.

The increasing size of this dataset presents computational and heuristic challenges for phylogenetic analyses. Two weighted transversion bias parsimony searches (3:1 and 5:1) were performed on the complete dataset using PAUP* (Swofford, 1998). At first, 250 random-addition replicate searches were performed, but with a tree limit of ten imposed to minimize search time on suboptimal islands. After 250 replicates, the most parsimonious topologies were used as starting trees for exhaustive searches without tree limits. This strategy was employed for both weighted analyses, and the most parsimonious topologies were pooled and evaluated using likelihood criteria. ModelTest v. 3.06 (Posada & Crandall, 1998) was used to select the most appropriate model for likelihood parameters. The most likely weighted parsimonious trees were then compared using consensus methods.

A two-tiered, compartmentalized strategy was adopted that followed Meyer (2003) for levels of topological support. The strict consensus topology derived from the most likely overall analyses was divided into four subequal components called basal, mid1, mid2, and derived. Because the basal, mid1 and mid2 cohorts are necessarily paraphyletic groups that include the common ancestor and some, but not all, of its descendants, representative derived clades were included in the paraphyletic analyses. In this way multiple derived member clades overlapped between more basal and derived analyses, and the overall topology could be "scaffolded" together by linking clades shared in both basal and derived compartments.

Within each of the four subanalyses, parsimony searches were performed using a 5:1 transversion bias. Both bootstrap (Felsenstein, 1985) analyses (1,000 replicates) and decay (Bremer, 1994) analyses (TreeRot v2; Sorenson, 1999) were performed to establish levels of support. Results from Bayesian methods (Mr. Bayes v3.04b) are not reported in this paper, but were generated for the four subgroups and compared to the combined parsimony/likelihood methods utilized in PAUP*. Overwhelmingly, they were consistent with the results presented here, but on few occasions differed in hypotheses of relationship. The scaffolded parsimony global topologies were compared to the scaffolded Bayesian topology using likelihood criteria in PAUP*. The combined topology derived from the compartmentalized Bayesian subsets was less likely than the overall topologies found using the combined parsimony/likelihood criteria. It appears that Bayesian results depended on taxon sampling and outgroup inclusion. While this finding may be of interest to the general systematic community, it is not a point specifically addressed in this paper.

RESULTS

The final culled dataset contained 297 OTUs and 1,107 characters, 493 base pairs from 16S and 614 bases from COI. For 16S, alignment followed those presented in Meyer (2003) based on secondary structure. Weighted parsimony searches resulted in 512 equally most parsimonious trees (MPTs) for 3:1 Ti:Tv and 480 trees for 5:1 searches. Derived portions of the comprehensive topology were consistent. Thus, all named clades (subfamilies, tribes and genera) presented in Figure 2 are found in all topologies, except one mentioned below. However, the topologies recovered from alternate weightings differed in five deeper regions, all of which are poorly supported regardless of methodology. First, 5:1 topologies placed the clade consisting of Propustularia/Nesiocypraea/ Ipsa basal as sister to all other cowries. In 3:1 topologies this clade moves up one node and is sister to Erosariinae. Second, the pustulose clade consisting of Nucleolaria/Cryptocypraea/ Staphylaea is monophyletic in 5:1 trees, while in 3:1 topologies these genera are a basal paraphyletic grade leading to the clade including Monetaria/Perisserosa/Erosaria. Third, in 5:1 topologies Perisserosa is sister to Erosaria, whereas in 3:1 trees, Perisserosa is sister to Monetaria. Fourth, the arrangement of major groups along the backbone from Umbiliini to Cypraeovulinae conflicts. Results from 5:1 searches are shown in Figure 2, whereas in 3:1 topologies, Notocypraea and Cypraeovula (Cypraeovulinae) are a basal sister grade leading to more derived member groups. Finally, the basal arrangement within Erroneini is different. In 3:1 topologies *Purpuradusta* is more basal, while in 5:1 trees, *Erronea* is more basal.

When alternative topologies were evaluated using ModelTest, the GTR+I+G model was selected as the best-fit model. When both the 3:1 MPTs and 5:1 MPTs were evaluated using the selected likelihood criteria [Iset base = $(0.315128\ 0.136452\ 0.111915)$, Nst = 6, Rmat = $(0.99559\ 41.36057\ 1.0461\ 1.68935$ 22.78834), rates = gamma, shape = 0.562423, Pinvar = 0.48426], the 5:1 subset was significantly more likely (ANOVA: p < 0.001, average -In likelihood = 49513.8). Therefore, results from the 5:1 searches are presented herein.

The overall relationships among major subgroups recovered in the 5:1 MPTs are more consistent with both morphological and fossil evidence in addition to being more likely based on molecular data. In particular, a monophyletic pustulose clade is more parsimonious for conchological and anatomical features, because it is more likely that a bumpy shell was derived a single time, rather than being derived either twice independently, or derived once then lost. Also, the basal, paraphyletic status of Notocypraea and Cypraeovula within the 3:1 topologies is inconsistent with the fossil record for both groups relative to more derived members of the 3:1 MPTs (i.e., Umbilia, Barycypraea, and Zoila), which appear earlier in the record and root more deeply in the 5:1 topologies. Also, the sister-group relationship of the two genera is more consistent with paleobiogeography (the breakup of Gondwanaland) and recognized affinities based on both conchological and developmental criteria. The other major discrepancies between the 3:1 and 5:1 MPTs (most basal cowries, Perisserosa affinities, and position of Purpuradusta) are more ambiguous based on alternate criteria (morphological or paleontological).

Suprageneric Relationships (Fig. 2)

Overall, suprageneric results were consistent with previous systematic findings (Meyer, 2003), with two exceptions. First, *Ipsa* falls outside Erosariinae and is no longer sister to Erosariini, but instead is allied with newly included *Propustularia* and *Nesiocypraea sensu stricto*. New sequence data from *Nesiocypraea teramachii neocaledonica* did not result in an affinity with other recognized "*Nesiocypraea*" species (*N. hirasei*, *N. sakurai* and *N. langfordi*). Instead, *Nesiocypraea teramachii* roots more deeply in the phylogeny as a distant sister to *Ipsa childreni*, within a clade that includes both *Ipsa* and *Propustularia*. Thus, the inclusion of

FIG. 2. Strict suprageneric consensus topology of 480 most parsimonious trees derived from a 5:1 Ti:Tv weighted search strategy of all 297 OTUs. Subfamilies are indicated with arrows and tribes are listed to the right. The four compartments for further subanalyses are bracketed to the right. The four newly added genera are capitalized and bolded. ¹Lyncina includes the subclades *Callistocypraea*, *Miolyncina* and *Lyncina* as reported in Meyer (2003). ²Austrasiatica replaces the prior use of *Nesiocypraea* for the same clade. ³*Erronea* now includes *Adusta*, formerly recognized as the sister taxon.

two new ancient lineages (Propustularia and Nesiocypraea) affects the relative position of Ipsa, Moreover, the finding that Nesiocypraea teramachii is not related to other previously recognized Nesiocypraea, compels me to recognize the clade Austrasiatica proposed by Lorenz (1989) at the generic level for the group including Austrasiatica hirasei, A. sakurai, and A. lanafordi. There are some conchological and anatomical features that support this separation. The left posterior terminal ridge in Nesiocypraea is more produced and separate from the body of the shell, whereas in Austrasiatica, the ridge is continuous with the booy, Lorenz (pers. comm.) also states that (1) Nesiocypraea lacks a distinct embryonic banding, having instead only a darker middorsal zone, (2) Nesiocypraea have a proportionally larger spire, and (3) the darker pattern of the shell is absent in juvenile Austrasiatica, only gained after the deflection of the labral margin; whereas, the darker pattern can be part of juvenile Nesiocypraea shells. Additionally, the rachidian tooth of Nesiocypraea lacks the prominent paired basal denticles present in the three Austrasiatica taxa, and the tooth shape is less elongated and squared, whereas the rachidian in Austrasiatica narrows toward the cusps (Bradner & Kay, 1996). The fact that Austrasiatica was erected to differentiate the three species (albeit incorrectly aligned with Schilderia) is also an indication that the two lineages possess independent histories. The deep position of Propustularia within the cowrie phylogeny is not surprising because it is one of the oldest of extant taxa, extending back to the Lower Eocene (Kay, 1996).

The second suprageneric difference concerns the relative position of *Zoila* in the overall phylogeny and is caused by the inclusion of sequence data for two taxa from the ancient lineage *Barycypraea*. These new data indicate that *Barycypraea teulerei* and *Barycypraea fultoni* are sister taxa, and they are sister to *Zoila*. This *Barycypraea*/*Zoila* clade is recognized as the extant members of the subfamily Bernayinae, a group that includes many extinct fossil members and extends back into the Mesozoic (Kay, 1996). These new data change the relative position of *Zoila* to Cypraeinae (Meyer, 2003); however, the topology in this region of the phylogeny is poorly supported.

The final suprageneric addition to the molecular database is the inclusion of sequence data from *Schilderia achatidea*, the single, living representative from an older, more diverse genus of European affinities. Previously, the paraphyletic arrangement of the genera *Pseudozonaria* and *Zonaria* was a surprising result (Meyer, 2003). These new data for *Schilderia* place the genus as sister to *Zonaria* to the exclusion of *Pseudozonaria* (and *Neobernaya*), and phylogenetic results maintain their independent, paraphyletic status. These finding are more consistent with geographic affinities than recognized taxonomic affinities (*Pseudozonaria* is often considered a subgenus of *Zonaria*), as both *Neobernaya* and *Pseudozonaria* are currently restricted to the eastern Pacific whereas *Schilderia* and *Zonaria* are restricted to the western Atlantic.

Basal Compartment (Fig. 3)

Five Ovulidae taxa are added in these analyses: Pseudocypraea exquisita, Volva volva, Primovula concinna, Dentiovula takeoi, and Prosimnia semperi. Within Ovulidae, only a few major clades are well supported and may be the results of poor taxon sampling. First, the clade Eocypraeinae appears well supported and includes Pedicularia, Jenneria and Pseudocypraea. Eocypraeinae is sister to a strongly supported clade (Ovulinae) that includes the remaining Ovulidae. Within the Ovulinae, two subgroups are well supported and represent the major clades Volvini and Ovulini. Of the added Ovulidae, Volva falls into Volvini, but Prosimnia unexpectedly falls into Ovulini as do Primovula and Dentiovula. These results are generally consistent with Cate's (1974) arrangement of higher-level relationships within the Ovulidae. Cyphoma gibbosum falls basal to these two sisters in the strict consensus topology; however, its position is poorly supported, and it is expected to move within the Volvini with the inclusion of more taxa. Monophyly of Ovulidae is not addressed herein and would require the inclusion of more distant representatives from Lamellaridae, Triviidae and Eratoidae.

The Cypraeidae basal group includes the genera *Propustularia*, *Nesiocypraea*, *Ipsa*, *Cryptocypraea*, *Nucleolaria*, *Staphylaea*, *Monetaria*, *Perisserosa*, and *Erosaria*. *Propustularia*, *Nesiocypraea*, and *Ipsa* form a clade that roots deeply within the phylogeny and is sister to all other cowries. Each of the three genera is represented by only a single taxon, and only *Nesiocypraea* contains additional recognized species missing from the dataset (*Nesiocypraea midwayensis*, *N. lisetae* and *N. aenigma*). While sharing a most recent common ancestor, the three genera are highly divergent from each other, representing significant periods of independent history. Two

FIG. 3. Basal Compartment cladogram and phylogram. Bootstrap values are presented above branches in the cladogram and rescaled decay values below. Bolded taxa are new additions to the data set. Their identity number shown in parentheses follows the listing in the Appendix. Generic or suprageneric groupings are indicated to the right of the cladogram. OTUs with an asterisk (*) are not ESUs based on molecular criteria. Phylogram to the right is based on likelihood distances using a GTR+I+G model of sequence evolution. Note that the scaling for branch lengths changes between Ovulidae and Cypraeidae.

are known exclusively from the Indo-Pacific (Nesiocypraea and lpsa) and one (Propustularia) from the western Atlantic, but has a fossil record from North America, the Caribbean, and Europe (Kay, 1996). The splits among these ancient groups are among the earliest of all extant species and may have occurred in the Mesozoic. While reasonably supported as a clade, this basal group is not strongly supported as the most basal sister, and in other analyses (3:1) moves up to become sister of the remaining basal taxa (Erosariinae).

The final six genera from the basal compartment form the strongly supported clade Erosariinae and is the sister group to all remaining extant species. Membership and relationships within the Erosariinae are consistent with previous findings (Meyer, 2003). Five taxa from Erosaria are added: Erosaria marginalis, E. citrina, E. helvola cf. callista, E. macandrewi, and E. englerti. Ten independent lineages are strongly supported (bootstraps > 90/decays > 6) within Erosaria, but interrelationships among them are not (< 50/< 4). Erosaria marginalis and E. citrina, both from the western Indian Ocean, are strongly supported as sister taxa. This clade is poorly supported as sister to the E. helvola complex. Within Erosaria helvola, three ESUs are identifiable: E. helvola hawaiiensis from Hawaii, E. helvola cf. callista from the Marguesas, and E. helvola helvola from the remainder of the IndoPacific. The newly included ESU, E. helvola cf. callista, may need a new name, because the type locality of E. helvola callista is Tahiti (Shaw, 1909), not the Marquesas. These five taxa are sister to the remaining Erosaria; however, the basal position is poorly supported. Erosaria turdus is a monotypic, deeply divergent lineage. Newly added Erosaria irrorata, a species restricted to the oceanic islands of the Pacific, is poorly supported as sister to a strongly supported clade (97/12) including E. albuginosa and E. poraria. These three taxa are sister to a well-supported lineage (92/6) of eight taxa that I tentatively recognize as Paulonaria at the subgeneric level. New sequence data from Erosaria macandrewi, a Red Sea taxon, closely ally that species with E. beckii. These two species are sister to the remaining Paulonaria taxa. The final additional taxon within Paulonaria is Erosaria englerti, a species endemic to Easter Island and Sala y Gomez. Erosaria englerti shares a more recent common ancestor with the remaining five Paulonaria taxa. All other relationships within Erosaria are the same as those presented in Meyer (2003) and are indicated in Figure 3. Newly added haplotypes from E. lamarckii *lamarckii* populations of the western Indian Ocean exhibit a recent divergence from the previously recorded *E. lamarckii* cf. *redimita* of the Andaman Sea. One final finding from additional *Erosaria* sequence data is that haplotypes from *Erosaria miliaris* and *E. eburnea* individuals interfinger, indicating that either the divergence between these two taxa is very recent and lineage sorting has not occurred, or that these two taxa represent a cline across the western Pacific from a colored dorsum in the west to white shells in the east.

Mid1 Compartment (Fig. 4)

The second paraphyletic compartment contains mostly large-shelled taxa from the following tribes: Umbiliini, Cypraeini, Mauritiini, Luriini, Austrocypraeini, and the genus Pustularia. All six clades are well supported (> 70/> 5) except for Austrocypraeini. As in Meyer (2003), interrelationships among these major suprageneric clades are resolved in the consensus, but poorly supported. Austrocypraeini and Luriini are sisters and recognized as the subfamily Luriinae. Barycypraea and Zoila are sisters and recognized as the subfamily Bernavinae. Cypraeini and Mauritiini are sisters and recognized as the subfamily Cypraeinae. In the current topology, Pustularia and all remaining cowries share a more recent common ancestor. This large clade is sister to Luriinae, which in turn is sister to Bernayinae, and this inclusive clade is sister to Cypraeinae. As in Meyer (2003), Umbiliini is sister to all remaining mid1, mid2 and derived taxa.

Within the mid1 compartment, 13 taxa are added to the sequence database. The first addition falls within the genus Umbilia and is tentatively recognized as Umbilia cf. petilirostris. A single divergent sequence was generated from tissue samples collected from the deep waters in the Capricorn Channel off Queensland, Australia. Seven sequenced individuals were completely identical, while an eighth sample from a subadult shell was significantly divergent. This single sample may represent the newly described Umbilia petilirostris Darragh, 2002; however, authors disagree on its taxonomic status (Wilson & Clarkson, in press). Until more comprehensive sampling is done in the region, I present the divergent sequence as a different ESU, which does not preclude it from being lumped within U. capricornica at a later date with more exhaustive sampling. The relationships within Umbilia remain as in previous analyses (Meyer, 2003).

The second taxon added to mid1 is Leporicypraea mappa aliwalensis from Natal, South

FIG. 4. Mid 1 Compartment cladogram and phylogram. All other information as in Fig. 3.

Africa, and falls as sister to Leporicypraea mappa rosea. Lorenz (2002) has recently revised the taxonomy of the mappa group in light of molecular findings. Importantly, the names I associated previously with ESUs have changed, and those changes are reflected in the Appendix and also discussed herein. The taxon I previously recognized as Leporicypraea mappa viridis from SE Polynesia is now recognized as Leporicypraea admirabilis. The taxon I previously recognized as Leporicypraea mappa panerythra from the non-continental portions of the western Pacific is now recognized as Leporicypraea mappa viridis. The other taxon names remain the same. Sequences of L. mappa "rewa" from Pacific localities (Fiji, Vanuatu, Palau, and South China Sea) interfinger with haplotypes of L. mappa geographica individuals from Indian Ocean localities (NW Australia, Phuket, Seychelles, and Zanzibar). Therefore, I recognize only a single taxon, L. mappa geographica, for this clade. Because of its conchological distinctiveness and sympatry with conspecifics, Lorenz (2002) elevated L. mappa geographica to specific status with Indian and Pacific subspecies. Based on the genetic difference between mappa-complex conspecifics and geographic overlap, specific status is certainly acceptable. However, the remaining L. mappa subspecies are paraphyletic. The phylogeny Lorenz (2002: 27) presents is correct and reflects this arrangement. Certainly, other recognized cowrie species are derived from paraphyletic parent species (e.g., Eclogavena coxeni and others; see Meyer, 2003: table 4, and cases herein), and L. geographica would have to be added to this list. These results suggest a third species sister to L. geographica should be recognized that would include both L. mappa viridis and L. mappa admirabilis. L. mappa geographica individuals have been found sympatrically with both L. mappa mappa and L. mappa viridis individuals in the Pacific Ocean. However, as yet, L. mappa mappa and L. mappa viridis haplotypes have not been found together.

One new undescribed taxon is added to *Mauritia*. Haplotypes of *M. arabica* individuals from American Samoa cluster independently from haplotypes of *M. arabica* individuals from other Pacific localities. Shells from Samoan individuals tend to be smaller, more heavily margined and more circular than individuals from other Pacific localities. Results from increased sampling in both *M. depressa depressa* (N = 10) and *M. depressa dispersa* (N = 10) maintain their independent, reciprocally monophyletic status, albeit recently diverged. As in

previous findings, the interrelationships among major lineages in *Mauritia* are poorly supported. Consensus methods and poor support result in two polytomies (Fig. 4). Further genetic data will be needed to address this region of the phylogeny as all extant taxa have been sampled.

New sequence data from Barycypraea teulerei and B. fultoni place them as sister taxa and align them with the genus Zoila to form the group Bernavinae. Sequence data presented for Barycypraea fultoni are of B. fultoni amorimi from Mozambique. The Australian Zoila marginata complex is split into two ESUs as increased sampling indicates fixed molecular differences between populations separated by the Southwest Cape region between capes Naturaliste and Leeuwin. Further sampling directly within this region may uncover intermediate haplotypes that would link the two ESUs and suggest a cline instead of two independent lineages. Such a finding is the case in the Zoila friendii complex. However, as none have been discovered yet, I present the data as two tentative ESUs: Zoila marginata marginata to the south and Z. marginata ketyana to the west. Other described Z. marginata taxa (Lorenz, 2001; 2002) within each ESU interfinger, and do not fulfill molecular criteria for recognition. Sequence data from Zoila mariellae are the final addition to the Bernayinae clade. While the exact provenance of the animal sequenced is unknown, it is likely from the northwestern shelf of Australia. Molecular results place Z. mariellae as a distinct sister to Z. decipiens, also from the northwestern shelf, as expected.

Following along the phylogeny, the clade Luriinae comes next. Talparia and Luria are strongly supported as the clade Luriini. A small fragment from 16S was amplified from a degraded Talparia exusta specimen, and as expected, the taxon is sister to the more widespread Talparia talpa. Surprisingly, sequence divergence between the two species appears to be relative small, indicating a more recent divergence than expected. Better-preserved material from T. exusta is needed before these relative results can be confidently assessed. The inclusion of four new taxa to the Austrocypraeini (Arestoides argus contrastriata, Lyncina broderipii, L. ventriculus from the Indian Ocean, and L. kuroharai) does not help in resolving interrelationships among member taxa. Arestoides argus is broken into a Pacific clade, A. argus argus, and a western Indian Ocean clade, A. argus contrastriata, based on additional sequence data from the Indian Ocean. Lyncina broderipii appears as sister to L. nivosa within the Callistocypraea clade, as

predicted in Meyer (2003). A single sampled individual of L. ventriculus from Christmas Island in the Indian Ocean falls significantly outside the haplotype cluster of individuals (N = 6)from various regions of the Pacific basin. Lyncina ventriculus is an oceanic taxon, and because of the geographic gap between sites across continental Southeast Asia, I choose to present the Christmas Island form as new. undescribed, distinct ESU. Further sampling of individuals from Christmas Island may change this interpretation, but they are currently lacking. A single sample of Lyncina kuroharai was sequenced and the results place it closely related to L. sulcidentata, an endemic Hawaiian taxon. The shallow split between these two taxa indicates a relatively recent common ancestor. Faunal ties have been documented in other cowrie species between Hawaii and Japan. most notably in Luria isabella, and the close affinities between L. kuroharai and L. sulcidentata represent another example of this biogeographic link.

The final two ESUs added within the mid1 compartment are members of the genus *Pustularia*, and more specifically are recognized subspecies of *Pustularia bistrinotata*. A single *P. bistrinotata keelingensis* individual was sequenced, is distinct, and appears as sister to the remaining *P. bistrinotata* complex. Furthermore, *P. bistrinotata sublaevis* individuals (N = 5) from southeast Polynesia (Tuamotu and Societies) cluster together, forming a third ESU within *P. bistrinotata*.

Mid2 Compartment (Fig. 5)

The third phylogenetic compartment, mid2, contains members from the genera Neobernaya, Pseudozonaria, Schilderia, Zonaria, the subfamily Cypraeovulinae, and the tribe Bistolidini of the subfamily Erroneinae. Interrelationships among member clades are consistent with previous findings (Meyer, 2003). Neobernaya and Pseudozonaria are sisters, and that clade is sister to the remaining cowries. The inclusion of sequence data from the genus Schilderia (S. achatidea), place the group as sister to Zonaria, and together this clade shares a more recent ancestor with the remaining taxa. The subfamily Cypraeovulinae includes both the South African Cypraeovula and South Australian Notocypraea and is sister to the western IndoPacific Erroneinae, which is composed of two tribes: Bistolidini and Erroneini

Within the mid2 compartment, 25 taxa are added to the existing sequence database; at

least one ESU is added within each genus except the monotypic Neobernaya. Pseudozonaria nigropunctata, a Galapagos endemic, falls into the eastern Pacific clade as a divergent sister to P. arabicula, although not strongly supported. The position of Schilderia achatidea has been mentioned previously as sister to Zonaria, now found exclusively in the eastern Atlantic. Two taxa are added from Zonaria. Zonaria picta from the Cape Verde Islands falls near the base of Zonaria, and its relationship with other Zonarid taxa is ambiguous, resulting in a polytomy at the base of the group. Alternative phylogenetic reconstructions at the base of the group show small internodes, indicative of a short radiative burst, with little divergence since. New sequence data from Pseudozonaria angelicae are extremely similar to haplotypes from P. pyrum (both P. pyrum angolensis and P. pyrum senegalensis). I include P. angelicae as a taxon in the phylogeny, but prefer to consider it at most a subspecies until further sequence data are available within the P. pyrum complex, as I have reservations concerning divergences along the mostly continuous West African/Mediterranean coastline.

Sequence data from six additional taxa are included within Cypraeovulinae, two from Notocypraea and four from Cypraeovula. In Notocypraea, I tentatively recognize two ESUs within Notocypraea angustata, with a phylogenetic break somewhere between Port Lincoln and Port Macdonnel. South Australia. Two divergent haplotype clusters exist without intermediate states. Again, further data may change this interpretation, but at present I chose to represent these as different ESUs indicating distinct evolutionary trajectories. Sequence data from a single specimen of Notocypraea hartsmithi, a rare species from southeastern Australia, indicate that the species is sister to all remaining Notocypraea taxa. Within Cypraeovula, four taxa are added, but their inclusion does not change previous interpretations that the group is composed of predominately four divergent lineages with minor differences within each. New sequence data from both Cypraeovula fuscorubra and C. fuscodentata closely align these taxa with C. capensis. New sequence data from C. mikeharti and C. algoensis closely align those taxa with C. edentula and C. alfredensis. Noting the shallow divergences among recognized species in Figure 5, I am doubtful that many of the described subspecies within Cypraeovula (summarized in Lorenz, 2002) will fulfill my molecular criteria for ESU status. As some species are differentiated currently by only a

MEYER

FIG. 5. Mid 2 Compartment cladogram and phylogram. All other information as in Fig. 3.

single mutation (e.g., Cypraeovula mikeharti/ C. algoensis or C. castanea/C. iutsui), there simply is not enough room for differences to have accumulated between taxa. This is not to say that described entities are not independent. Indeed, because Cypraeovula taxa are direct developers with limited dispersal and gene flow, regional differences are expected on small geographic scales, much like the South Australian endemic clades Umbilia. Zoila, and Notocypraea. However, based on the genetic similarity among sampled member Cypraeovula, much of this variation has to be very recently derived. This pattern is borne out in the South Australian direct developers that have been more extensively sampled.

The tribe Bistolidini within Erroneinae is composed of members from five genera: Palmadusta, Bistolida, Ovatipsa, Talostolida and Cribrarula. As in Meyer (2003), the basal root of Bistolidini is poorly resolved. Overall analyses place either Palmadusta as sister to the other four genera or Palmadusta and Bistolida as a clade, sister to the remaining three. Compartmentalized analyses place Palmadusta at the base, although poorly supported. The addition of 15 ESUs did not help in resolving this issue. Only one taxon is added to the Palmadusta clade, but it alters the subspecific designations previously ascribed (Meyer, 2003). New haplotypes from Andaman Sea P. clandestina individuals form a distinct monophyletic clade. This new ESU is sister to the western Indian Ocean P. clandestina passerina, and the two of them are sister to the Pacific P. clandestina clade and the Japanese endemic P. artuffeli. Based on a review of P. clandestina subspecies and type localities, the Pacific clade that I had formerly (Meyer, 2003) recognized as P. clandestina clandestina should be P. clandestina candida, and the new P. clandestina clade from the Andaman Sea now bears the name P. clandestina clandestina. I also reviewed the subspecies and type localities for the three P. asellus ESUs previously unnamed (Meyer, 2003). Based on increased sampling and conchological comparisons, I tentatively ascribe the following subspecific designations for the three clades: P. asellus asellus for the western Indian Ocean clade, P. asellus vespacea for the Sevchelles to western Pacific clade, and P. asellus bitaeniata for the Melanesian and Pacific clade (Fig. 5, Appendix). Unfortunately, the addition of P. clandestina clandestina does not help in resolving the basal nodes of Palmadusta. As shown in Figure 5, the base of Palmadusta is poorly resolved and sister group assignments are ambiguous. A few lineages remain strongly supported (*P. asellus*, *P. clandestina/diluculum*, *P. ziczac* and *P. contaminata*), but confident hypotheses of other interrelationships require further data.

Three taxa are added to Bistolida: B. stolida diagues, B. owenii and an undescribed, distinct eastern Indian Ocean clade of B. ursellus. Individuals of B. stolida diagues from the Sevchelles fall as sister to B. stolida rubiginosa. Bistolida owenii, a western Indian Ocean taxon, is sister to the Red Sea endemic B. erythraeensis. A new Bistolida ursellus sequence from the Andaman Sea is poorly supported as sister to the remaining B. ursellus taxon from the Pacific basin. Its placement is equally parsimonious as either sister to B. ursellus (Pacific) or forming a B. ursellus grade leading to the B. kieneri lineage. The topology of the two B. ursellus taxa as sisters is more likely and consistent with morphology.

One taxon is added to Ovatipsa and two taxa to Talostolida. Within Ovatipsa, the subspecies O. chinensis amiges from the Pacific basin and Western Australia is distinct from O. chinensis chinensis from the Philippines westward through the Indian Ocean to the east coast of Africa. Various other O. chinensis subspecies have been described within the Indian Ocean (e.g., Lorenz & Hubert, 1993), and preliminary data indicate that these Indian Ocean subspecies may represent very recent divergences within what I am currently recognizing as O. chinensis chinensis. However, until more individuals are sampled, I maintain them all under the taxon Ovatipsa chinensis chinensis. Within Talostolida, two taxa are added that appear as sisters to each other: T. subteres from southeastern Polynesia and T. latior from Hawaii. These two taxa are sister to Talostolida pellucens. All four taxa currently included within Talostolida are deeply divergent independent ESUs. A single haplotype of Talostolida teres "alveolus" (sensu Lorenz, 2002) is completely identical to haplotypes of T. teres teres individuals from both the Society Islands and the Tuamotu. Moreover, T. teres individuals from SE Polynesia have been described by Lorenz (2002) as a distinct subspecies *T. teres "janae"*; however sampled individuals of *T. teres* from SE Polynesia interfinger with individuals sampled from the Western Pacific (Papua New Guinea and Guam). Therefore, the data do not support T. teres "janae" as a valid taxon, based on my criteria. All Marguesan individuals sequenced possess T. pellucens haplotypes, whereas all T. teres-like individuals from the remainder of SE Polynesia possess T. teres haplotypes.

The Cribrarula clade includes eight additional taxa, making it the most diverse genus within Bistolidini. Two taxa, Cribrarula taitae from American Samoa and C. garciai from Easter Island, are added to the deeply divergent Pacific subclade. Both taxa are recently divergent members from their respective sister taxon. Cribrarula taitae appears as a closely related sister to C. catholicorum, and C. garciai is closely related to C. cumingii. Only a single individual from each of the two taxa was included in these analyses, and the results would be better addressed with multiple samples. Two members are added to the Western Indian Ocean subclade: Cribrarula pellisserpentis and C. esontropia francescoi, both from Madagascar. Cribrarula esontropia francescoi is a closely related sister to C. esontropia esontropia, which includes C. esontropia cribellum (Meyer, 2003). Cribrarula pellisserpentis is a deeply divergent member within the western Indian Ocean subclade and is sister to the other three ESUs. Four taxa are added to the remaining Cribrarula member clade. A single individual of C. cribraria from Masirah, Oman, appears significantly divergent from population samples of the previously unnamed C. cribraria ESU from the Andaman Sea. Conchologically, this individual approximates the western Indian Ocean taxon C. cribraria abaliena and is tentatively recognized as such. A single individual of C. cribraria australiensis from Western Australia falls within the Andaman C. cribraria cluster; therefore, I tentatively adopt the name C. cribraria cf. "australiensis" for a taxon that extends from the Andaman Sea southward to Western Australia. More exhaustive sampling is required to confirm these geographic patterns. A single individual of C. exmouthensis magnifica from Broome is significantly different from samples of C. exmouthensis exmouthensis from the Exmouth Gulf region, therefore validating the status of that taxon. Additional samples of C. cribraria rottnestensis (N = 3) further validate the taxon's uniqueness. Eight individuals of C. melwardi from northeastern Australia all share a common ancestor and are reciprocally monophyletic with respect to the remaining C. cribraria individuals. Moreover, a single C. cribraria cribraria individual from the same reef (Lamont Reef in the Bunker Group) clusters as expected with other Pacific C. cribraria cribraria individuals. The final taxon included is C. cribraria abrolhensis (N = 3), and haplotypes are shallowly divergent but reciprocally monophyletic with respect to samples of C. cribraria cribraria (N = 30) from predominately western Pacific localities (Appendix). More thorough

analyses and discussion of this fascinating, species-rich group is in preparation (Meyer et al., in prep.).

Derived Compartment (Fig. 6)

The final compartment analyzed is the derived monophyletic clade recognized as the tribe Erroneini. This clade includes the following nine genera: Austrasiatica, Palmulacypraea, Erronea, Purpuradusta, Contradusta, Notadusta, Eclogavena, Melicerona and Blasicrura. Many (25) taxa are added within the tribe, and phylogenetic analyses result in some surprising affinities. For the most part, major genera are well supported, but their interrelationships are not. Three taxa currently ascribed to Austrasiatica were included in previous analyses (Meyer, 2003); however, they were considered as representatives of the genus Nesiocypraea. As discussed earlier, the finding that Nesiocypraea teramachii is distantly related raises the subgenus Austrasiatica to generic status for the clade that includes Austrasiatica langfordi, A. hirasei and A. sakurai. As in Meyer (2003), Austrasiatica is sister to all other Erroneini taxa, followed by Pamulacypraea as sister to the remainder. As predicted in Meyer (2003), the newly added Pamulacypraea musumea falls as sister to P. katsuae. Even with the addition of 24 taxa (a 67% increase), the topology among the rest of the major Erroneini lineages is ambiguous. Six added "Erronea" species form a basal grade leading to the Adusta/Erronea split previously recognized in Meyer (2003). I take a conservative approach and redefine Erronea to include all these taxa and subsume Adusta to a wellsupported subclade within the group, as the new data demonstrate that Adusta and Erronea (including the more recent additions) are not equivalent (sisters). If Adusta were to be maintained at equivalent generic status, Erronea would represent a paraphyletic group. Purpuradusta, Eclogavena, Melicerona and Blasicrura are all well-supported monophyletic lineages. As in Meyer (2003), Notadusta is well supported only if restricted to members of the Notadusta punctata complex. However, because Notadusta martini is often considered a member of Notadusta, I include it within Notadusta here, although poorly supported. In a similarly conservative manner, I include two of the added taxa within Contradusta, although again poorly supported. Support for relationships among these seven genera is poor and is likely because of the short internode length between divergent lineages.

FIG. 6. Derived Compartment cladogram and phylogram. All other information as in Fig. 3.

Twelve additional taxa are added to Erronea. Six of the additions are traditionally recognized as distinct species, four have been recognized as subspecies, and two are newly discovered, but may have names associated with them that have been placed into synonymy. Of the new species, three form a relatively well-supported clade: Erronea rabaulensis shares a more recent common ancestor with E. fernandoi (80/1), and those two are sister to E. vredenburgi (84/ 3). The three additional Erronea species all nest deeply within the clade, and their relationships are not well supported. Erronea pallida appears as sister to the clade of the previously described three species and Adusta. Erronea pyriformis is relatively well supported (81/6) as the sister to the clade previously recognized as Erronea (Meyer, 2003). Finally, Erronea xanthodon falls at the base of Erronea and is sister to all other Erronea taxa, Within the crown Erronea subclade, six taxa are added that are all traditionally recognized at the subspecific level. Individuals of Erronea cylindrica lenella (N = 8, all from New Caledonia) form a monophyletic group strongly supported (91/6) as sister to the clade including the remaining E. cylindrica individuals plus two subspecies of E. ovum. These results imply that E. cylindrica at the specific level is a paraphyletic taxon. Newly added individuals of Erronea ovum ovum from both Singapore and the Philippines (N = 15) form a monophyletic group sister to E. ovum palauensis (N = 7). The four remaining, newly added taxa are all members of the Erronea caurica complex. First, individuals (N = 7) of the newly described E. caurica samoensis appear as a distinct lineage sister to individuals (N = 15) from the remainder of the Pacific and Western Australia (E. caurica caurica). Four geographically structured haplotype clades are found exclusively in the Western Indian Ocean. Erronea caurica dracaena is currently restricted to the Seychelles based on sampling. Newly added individuals from East Africa and Madagascar form a haplotype clade that I recognize as Erronea caurica elongata. Individuals of E. caurica guinguefasciata from the Red Sea, East Africa and Oman form the third monophyletic group. Finally, newly sequenced individuals from Masirah (N = 7) form a private haplotype clade (E. caurica ssp. #1) sister to E. caurica quinquefasciata. The final, newly added taxon (E. caurica ssp. #2) within the E. caurica complex is a clade (N = 18) that includes individuals primarily from India, but with a few individuals from Masirah, Oman. This haplotype clade is sister to the clade recognized previously as E. caurica cf. derosa from the Andaman Sea (Meyer, 2003). The Erronea caurica complex and the associated *E. cylindrica*, *E. ovum* and *E. errones* species will be more thoroughly addressed in another paper (Meyer, in prep.) as the group exhibits remarkable geographic structuring, polyphyly of recognized species (*E. ovum*), and evidence of introgression based on nuclear markers.

Purpuradusta is well supported and contains four newly added taxa that fall in expected relationships. The southeastern Polynesian endemic species Purpuradusta oryzaeformis is distinct and sister to P. minoridens that ranges throughout the remainder of the western IndoPacific. A single specimen of P. microdon from East Africa falls outside the haplotype clade of other sampled individuals from the Pacific basin (N = 5). This East African population is recognized as Purpuradusta microdon chrysalis. Two peripheral populations of Purpuradusta fimbriata in the Pacific Basin are introduced. First, Hawaiian populations of P. fimbriata are distinct (N = 7) and were previously recognized as P. fimbriata waikikiensis: thus this name is resurrected as a valid entity. Second, individuals from the Marguesas are also distinct genetically, consistent with the subspecies designation of Lorenz (2002), P. fimbriata marquesana (N = 14). Both of these Pacific P. fimbriata subclades share a more recent history with the widespread Pacific subspecies P. fimbriata unifasciata, as expected.

Two newly added species, "Erronea" barclavi and "Erronea" pulchella, come out as sister species in phylogenetic analyses. Moreover, these two taxa appear as sister to Contradusta in the most likely topology. Because of these results, and the poorly supported nature of their relationships, I tentatively place the two taxa in the genus Contradusta, with the caveat that they may be removed with future data. These results are somewhat surprising, particularly because "Contradusta" pulchella is thought to be closely related to Erronea pyriformis because of the darkly stained columellar dentition and overall conchological similarities. The sister relationship between Contradusta pulchella and C. barclayi is more acceptable as their divergence is deep, and the phylogenetic affiliations of C. barclayi were more difficult to predict based on morphological criteria. Another surprising result is the sister relationship between Notadusta martini and "Erronea" hungerfordi. Given these phylogenetic results, I tentatively place "Erronea" hungerfordi within Notadusta, but with little confidence, although it is reasonably supported (73/4), and suspect that it may be removed with more samples and

sequence data. Within the remaining Notadusta complex, individuals of *N. punctata trizonata* (N = 9) form a monophyletic group sister to the Pacific *N. punctata punctata* clade. Finally, in regards to Notadusta, "Notadusta" rabaulensis was mentioned previously as a member of *Erronea* and "Notadusta" musumea as Palmulacypraea, further reducing the membership of Notadusta (Meyer, 2003).

The final four additions to the dataset fall into Melicerona and Blasicrura. First, two taxa are added to Melicerona. Samples of Melicerona listeri melvilli (N = 5) from Queensland, Australia, form a monophyletic group sister to the remaining Melicerona taxa. (Two rostrate and melanistic individuals interfinger among the other three haplotypes indicating that the teratology is likely driven by phenotypic responses to environmental conditions rather than having a genetic basis.) Samples of Melicerona felina from both Oman and East Africa form a monophyletic group, and because the haplotypes from the two regions interfinger, there is no evidence for a distinction between the subspecies M. felina felina and M. felina fabula. Within Blasicrura, two taxa are added, based on the sequencing results. First, samples of Blasicrura summersi, a Fijian and Tonga endemic, appear as a recently divergent sister to the also newly included B. pallidula cf. vivia from American Samoa. This clade is sister to the Melanesian subspecies Blasicrura pallidula rhinoceros, as expected based on geography. This resulting topology indicates that the Blasicrura pallidula complex is paraphyletic.

DISCUSSION

The ultimate goal of this project is to construct a comprehensive phylogeny of cypraeid gastropods at the appropriate level for diversification studies. From a molecular perspective, all ESUs presented are effectively equal units of diversity, whether they are currently recognized as species, subspecies or some other level. There are some noted exceptions as OTUs were used on occasion that represented unsorted or clinal variation within an ESU (e.g., *Erosaria miliaris/eburnea*). However, on a general scale, each taxon shown in the phylogenies (Figs. 3–6) represents an independent evolutionary trajectory.

Because so much taxonomic information is available for cowries, it is informative to see how molecular criteria compare with recognized taxonomic entities. The most recent compilation of the cowries is that of Lorenz (2002),

and I will use his checklist (pp. 250-291) as a benchmark for comparisons. Lorenz recognizes 232 species, of which I have sequenced 210 (> 90%), and they are presented herein. The missing species are as follows: Nesiocypraea aenigma, N. lisetae, N. midwayensis, Austrasiatica alexhuberti, Erosaria ostergaardi, Zoila perlae, Lyncina camelopardis, L. joycae, Pustularia chiapponii, Cypraeovula colligata, C. cruickshanki, C. immelmani, Palmadusta androvensis, P. johnsonorum, Palmulacypraea Austrasiatica deforgesi, boucheti, P. omii, Eclogavena luchuana, Erronea (?) angiovorum, and E. nymphae. Sequences from samples of both Purpuradusta barbieri and "Talostolida" rashleighana have been obtained, but were too late for inclusion in these analyses. All missing species are rare, with small ranges located generally at the periphery of their putative sister species based on conchological and anatomical characters. Of the 210 sequenced species, phylogenetic comparisons and molecular criteria support all but 15 (93%) as ESUs. The 15 recognized species not supported by my criteria are discussed below. For Nucleolaria granulata, Monetaria obvelata, Erosaria eburnea, Zoila orientalis, Z. thersites, Luria controversa, L. gilvella, Notocypraea occidentalis, and Palmadusta humphreysii, multiple individuals were sequenced and the haplotypes interfingered within their closest relative. For the next six species that I do not support, only a single individual was sequenced, thus they may indeed represent a very young independent trajectory. However, when compared to the genetic diversity within their closest relative, the genetic difference is unremarkable, and in some instances, only a single mutation different from putative conspecifics: Zonaria angelicae, Z. petitiana, Cypraeovula mikeharti, Bistolida brevidentata, Cribrarula garciai, and C. taitae.

While genetic data are overall broadly consistent with taxa recognized at the specific level, the results are even more remarkable when compared among taxa recognized at subspecific levels. Lorenz recognizes 260 taxa at the subspecific level. Of those 260 subspecies, I have sequenced at least two individuals from 160 in order to assess their validity. Molecular criteria support 113 (> 70%) of these taxa as legitimate ESUs. Moreover, sequence results indicate an additional 20 distinct ESUs not recognized as subspecies by Lorenz (but sometimes mentioned as important varieties or forms). A full listing of sampled taxa and their current ESU status as indicated by the prior criteria can be found at the Cowrie Genetic Database Project Website (http:// www.flmnh.ufl.edu/cowries). The website includes other information, such as localities sampled, numbers of individuals for each taxon, and photographs of the specimens sequenced.

Overwhelming molecular support for traditionally recognized taxa, both at specific and subspecific levels, is extremely encouraging. First, from a taxonomic standpoint, these molecular results corroborate the excellent work done by centuries of malacological researchers, at both professional and amateur levels. Similar molecular surveys of other diverse groups will provide valuable comparisons in order to assess taxonomic congruence (e.g., Jackson & Cheetham, 1990) and address concordant diversification patterns. Second, from a molecular perspective, sequence data provide a suitable, objective, relative metric for circumscribing appropriate evolutionary units. Assuming rate constancy in the molecules (COI only, in prep.), molecular divergences can constrain the tempo of diversification and assess the distinctiveness of purported taxa. A growing body of molecular data across the diversity of life undoubtedly will provide insight to some of our most fundamental evolutionary questions.

ACKNOWLEDGEMENTS

An ever-growing number of individual and institutions have contributed and supported this ongoing research. Without their assistance, the work would not be possible. The following persons are recognized: Nonoy Alonzo, Vicente Azurin, Paul Barber, Don Barclay, Marty Beals, Victor Bonito, Philippe Bouchet, Michel Boutet, Roy Caldwell, Carlos Carvalho, Hank Chaney, John Chester, Peter Clarkson, Lori Bell Colin, Pat Colin, Allen Collins, Harry Conley, Vince Crayssac, Carolyn Cruz, Donald Dan, Martyn Day, Bruno de Bruin, Helen deJode, John Earle, Andrew Edinger, Mark Erdmann, Melissa Frey, Michel Garcia, Bill Gibbs, Serge Gofas, Terry Gosliner, Jeroen Goud, Robert Gourguet, Fabien Goutal, Paulo Granja, Kibata Mussa Haji, Jerry Harasewych, Itaru Hayami, Brian Hayes, Claus Hedegaard, Ed Heiman, Bert Hoeksema, John Hoover, John Jackson, Maurice Jay, Scott Johnson, Paul Kanner, Yasunori Kano, Tomoki Kase, Norbert Kayombo, Shigemitsu Kinjo, Lisa Kirkendale, Kitona Kombo Kitona, Utih Kukun, Senthil Kumar, Jean Paul Lefort, Bill Liltved, Hung-Chang Liu, Charlotte Lloyd, Felix Lorenz, Jr., Felix Lorenz, Sr., Larry Madrigal, Marlene Martinez, Gerald McCormack, Mohammed Mohammed, Hugh Morrison, Gowele Mtoka,

Mtumwa Mwadini, Peter Ng, Steve Norby, Shuichi Ohashi, Yoshihiro Omi, Ina Park, Marcel Pin, Cory Pittman, Xavier Pochon, Matt Richmond, Raphael Ritson-Williams, Goncalo Rosa, Gary Rosenberg, Teina Rongo, Fred Schroeder, Mike Severns, Pauline Severns, Hung-Long Shi, Brian Simison, Michael Small, John Starmer, Steve Tettlebach, David Touitou, Martin Wallace, Chia-Hsiang Wang, Dave Watts, Barry Wilson, Woody Woodman, Shu-Ho Wu. The following institutions are acknowledged: Florida Museum of Natural History; University of California Museum of Paleontology: Academy of Natural Sciences of Philadelphia; Bernice P. Bishop Museum, Honolulu, Hawaii; California Academy of Sciences; Institute of Marine Sciences, Zanzibar; University of Dar es Salaam; Jacksonville Shell Club; Musée National d'Histoire Naturelle, Paris, France; National Museum of Natural History Naturalis, Leiden, The Netherlands; Santa Barbara Museum of Natural History; National Museum of Natural History; and Suganthi Devadason Marine Research Institute. I also would like to thank Felix Lorenz, Jr., for his thoughtful comments, as well as the reviews of four anonymous reviewers. Final decisions and opinions are wholly mine.

This research has been financially supported by the following NSF grants: DEB-9807316, DEB 0196049, and OCE-0221382.

LITERATURE CITED

- BRADNER, H. & E. A. KAY, 1996, An atlas of Cowrie Radulae Mollusca: Gastropoda: Cypraeoidea: Cypraeoidae. San Diego Shell Club, San Diego. [i] + 179 pp.
- Club, San Diego. [i] + 179 pp. BREMER, K., 1994, Branch support and tree stability. *Cladistics*, 10: 295–304.
- BURGESS, C. M., 1985, *Cowries of the world.* Cape Town, South Africa: Gordon Verhoef, Seacomber Publications. xiv + 288 pp.
- CATE, C.N., 1974, The Ovulidae: a key to the genera, and other pertinent notes. *The Veliger*, 16: 307–313.
- CHOMCZYNSKI, P., K. MACKEY, R. DREWS & W. WILFINGER, 1997, DNAzol: a reagent for the rapid isolation of genomic DNA. *Biotechniques* 22: 550–553.
- DARRAGH, T. A., 2002, A revision of the Australian genus Umbilia. Memoirs of the Museum of Victoria, 59: 355–392.
- FELSENSTEIN, J., 1985, Confidence limits on phylogenies an approach using the bootstrap. *Evolution*, 39: 783–791.
- Evolution, 39: 783–791. FOIN, T. C., 1976, Plate tectonics and the biogeography of the Cypraeidae (Mollusca: Gastropoda). Journal of Biogeography, 3: 1934.
- FOLMER, O., M. BLACK, W. HOEH, R. LUTZ & R. VRIJENHOEK, 1994, DNA primers for amplification of mitochondrial cytochrome c oxi-

dase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Bio-

- technology, 3: 294–299. GROVES, L. T., 1994, Catalog of fossil and Recent Cypraeidae and Eocypraeinae (Ovu-lidae) described since 1971. The Cowry, (n.s.) 1: 5-16.
- JACKSON, J. B. & A. H. CHEETHAM, 1990, Evolutionary significance of morphospecies: a test with cheliostome Bryozoa. Science, 248: 579–583.
- KAY, E. A., 1957, The systematics of the Cypraeidae as elucidated by a study of Cypraea caputserpentis and related forms. Zoology. Hawaii, University of Hawaii.
- KAY, E. A., 1960, Generic revision of the Cypraeinae. Proceedings of the Malacological Society of London, 33: 278–287.
- KAY, E. A., 1963, Anatomical notes on Cypraea aurantium Gmelin and other cowries and an examination of the subgenus Lvncina Troschel. Journal of the Malacological Society of Australia, 7: 47-61.
- KAY, E. A., 1984, Patterns of speciation in the Indo-West Pacific. Pp. 15-31, in: F. J. RADOVSKY, P. H. RAVEN & S. H. SOHMER, eds., Biogeography of the tropical Pacific. Bishop Museum Special Publication No. 72: Honolulu.
- KAY, E. A., 1985, About the cowries. Pp. 4-14, in: C. M. BURGESS, ed. Cowries of the World. Cape Town, Republic of South Africa: G. Verhoef Seacomber Publications.
- KAY, E. A., 1990, Cypraeidae of the Indo-Pacific Cenozoic fossil history and biogeography. Bulletin of Marine Science, 47: 23-34.
- KAY, E. A., 1996, Evolutionary radiations in the Cypraeidae. Pp. 211-220, in: J. TAYLOR, ed., Origin and evolutionary radiation of Mollusca. Oxford: Oxford University Press. xiv + 392 pp.
- LILTVED, W. R., 1989, Cowries and their relatives of southern Africa: a study of the southern African Cypraecean and Velutinacean gastropod fauna. Cape Town, Republic of South Africa: G. Verhoef, Seacomber Publica-
- tions. 208 pp. LORENZ, F., 1989, Annotated descriptions of LORENZ, F., 1989, Annotated descriptions of Cypraeidae. some new and old members of Cypraeidae. Schrifen zur Malakozoologie (Cismar), 2: 138.
- LORENZ, F., 2000, Beiträge zur Kenntnis der Ringkauri Erosaria annulus (Linné 1758) und verwandter Arten (Mollusca: Gastropoda: Cypraeidae), Schriften zur Malakozoologie, 14: 1-95, 11 plts.
- LORENZ, F., 2001, Monograph of the living Zoila, Hackenheim, Germany: ConchBooks.
- 187 pp. LORENZ, F., 2002, New worldwide cowries. Hackenheim, Germany: ConchBooks. 292 pp. LORENZ, F. & A. HUBERT, 1993, A guide to
- worldwide cowries. Wiesbaden, Germany: C. Hemmen. 571 pp.
- MEYER, C. P., 2003, Molecular systematics of cowries (Gastropoda: Cypraeidae) and diver-sification patterns in the tropics. *Biological Journal of the Linnean Society*, 79: 401–459.
- MORITZ, C., 1994, Defining 'Evolutionarily Significant Units' for conservation. Trends in Ecology and Evolution, 9: 373-375.

- PALUMBI, S. R., 1996, Nucleic acids II: The polymerase chain reaction. Pp. 205-247, in: D. M. HILLIS, C. M. MORITZ & N. K. MABLE, eds., Molecular systematics, 2nd ed., Sunderland, Massachusetts, USA: Sinauer Associates, Inc
- POSADA, D. & K. A. CRANDALL, 1998, Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817–818.
- RIESE, K., 1931, Phylogenetische Betrachtung über das Nervensystem von Cypraea moneta auf Grund seiner Morphologie und Histologie. Jenaische Zeitschrift für Naturwissenschaft, 65: 361-486.
- RISBEC, J., 1937, Anatomie des Cypraeidae. Archives du Muséum National d'Histoire
- Naturelle, Paris, 14: 75–104. SCHILDER, F. A., 1936, Anatomical characters of the Cypraeacea which confirm conchological classification. Proceedings of the Malacological Society of London, 22: 75-112.
- SCHILDER, F. A., 1939, Die Genera der Cypraeacea. Archiv für Molluskenkunde, 71: 165–201.
- SCHILDER, F. A., 1965, The geographic distribu-tion of cowries (Mollusca: Gastropoda). The Veliger, 7: 171–183.
- SCHILDER, F. A., 1969, Zoogeographical studies on living cowries. The Veliger, 11: 367-377.
- SCHILDER, F. A. & M. SCHILDER, 1938, Prodrome of a monograph on living Cypraeidae. Proceedings of the Malacological Society of London, 22–23: 119–231.
- SCHILDER, M. & F. A. SCHILDER, 1971, A catalogue of living and fossil cowries. Taxonomy and bibliography of Triviacea and Cypraeacea, Gastropoda Prosobranchia. Memoires du Institut Royal des Sciences Naturelles de Belgique, (2)85: 170–246. SHAW, H. O. N., 1909, Notes on the genera
- Cypraea and Trivia. Proceedings of the Malacological Society of London, 8: 288–313.
- SORENSON, M. D., 1999, TreeRot. 2.0 ed. Boston, Massachusetts: Boston University.
- SWOFFORD, D. L., 1998, PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Meth-ods). Sinauer, Sunderland, Massachusetts.
 TROSCHEL, F. H., 1863, Das Gebiss der Scherter Burgerung und Bergerung der Bergerung der Staten Stat
- Schnecken zur Begründung einer natürlichen Classification. Berlin: Nicolaische Verlagsbuchhandlung.
- VAYSSIÈRE, A., 1923, Rechereches zoologiques et anatomiques sur les mollusques de la famille des Cypraeides, 1re partie. Annales du Musee d'Histoire Naturelle de Marseille, Zoologie 18: 1-120.
- VAYSSIERE, A., 1927, Rechereches zoologiques et anatomiques sur les mollusques de la famille des Cypraeides, 2me partie. Annales du Musee d'Histoire Naturelle de Marseille, Zoologie 21: 133–184, pls. 24–28. WILSON, B. & P. CLARKSON, in press, Australia's
- spectacular cowries, a review and field study of two endemic genera: Zoila and Umbilia, Odyssey Publishing.

Revised ms. accepted 19 January 2004

(hE)=(0E)=0]=(3-1)

35 34 37

6

10 m

40 41 (42(43)

Bit - Red Sea 17 - N. Java Auscat 18 - Coccs Keeling Asstant 18 - Coccs Keeling Asstant 20 - Jopan Asstant 21 - Ohrismas Island Asstant 21 - Ohrismas Island Asstant 21 - Ohrismas Island Asstant 22 - Selan Asstant 22 - Cetu. Janago Isl Asution 23 - Cetu. Janago Isl Asution 23 - Cetu. Janago Isl Asution 23 - Seland Astronomic 24 - Coron, Palavan Astronomic 25 - Selon, Janago Isl Astronomic 26 - Manado Astronomic 27 - Ohnini Astronomic 28 - Semonde Mergua 31 - Timor Singapore 31 - Timor Semonalamori 28 - Namadantant	 33 - Broome 33 - Broome 34 - Onslow 35 - Exmouth 36 - Exmouth 37 - Quobba 38 - Dirk Hartog 38 - Dirk Hartog 39 - Horrocks, Guinen 40 - Perth, Rutinest, Mandurah 41 - SW Cape 42 - Albany 43 - Esteranea 44 - Ceduna, Grast Australian Bight 45 - Port Lincoin 46 - Kangaroo Niland 47 - Port Macdonnell 47 - Port Macdonnell 	 49 - Lakes Entrance 49 - Lakes Entrance 51 - Copricom Bay 52 - Lizard Island, GBR 53 - Louisaes, PNG 54 - Solomon Islands 55 - Fija 55 - Fija 56 - Vap 58 - Vap 58 - Vap 59 - Gam 50 - Chukk 51 - Pohnpei 53 - Nauru 54 - Kwajelein 	65 - Majuro 66 - Wake 67 - Wake 87 - American Samoa 88 - Raotonga 88 - Raotonga 88 - Raotonga 88 - Raotonga 70 - Unimuti 70 - Unimuti 73 - Hawaii 73 - Hawaii 73 - Hawaii 73 - Hawaii 73 - Hawaii 74 - California 75 - Easte slond 76 - Clipperton Island 77 - California 79 - Puento Vallarta 80 - Panema	 81 - Columbia 82 - Florida Keys 82 - Florida Keys 83 - Florida Keys 84 - Mediterranean 85 - Canary Islands 85 - Canary Islands 86 - Canary Islands 87 - Senegal 88 - Angola 89 - Angola 89 - Angola 89 - Angola 89 - Angola 80 - Casterneides 90 - Galapagos 91 - Rapa 92 - Chesterneides 93 - Chesterneides 94 - Vanuatu 95 - Rabaul 	96 - New South Wales 97 - Balut 98 - South China Sea 99 - Andaman Is 100 - Tulean 101 - Matal 101 - Matal 101 - Cape St. Francis 101 - Bahamas 105 - Bahamas 105 - Bahamas 106 - Mozambique 107 - Dingo Beach 108 - Somalia
--	--	--	--	---	--

FIG. 7. Sampled localities indicated for listed taxa in Appendix (column 3),

g
at
Δ
>
Ъ
Ë
Ð
Ε
Ð
d
H
ō
σ
Ē
ω
ĝ
6
F
ð
÷
E
Ы
õ
\sum
\simeq
Z
Щ
Ч
AF
-

New taxa and sequence data are numbered and bolded. Additional, newly sampled localities for taxa previously reported are also bolded. Crossouts are names previously used in Meyer (2003) that are corrected herein because of taxonomic revisions. *for the legend see Fig. 7.

				Acces	sion #
OTUS	Authors	Sampled localit	lies*	16S	COI
		OUTGROUP	S		
Jenneria pustulata	Lightfoot, 1786	79		AY161402	AY161635
Pseudocypraea adamsonii	Sowerby I, 1832	5		AY161403	AY161636
1. Pseudocypraea exquisita	Petuch, 1979	23		AY534351	AY534428
Pedicularia pacifica	Pease, 1865	57, 59		AY161384	AY161617
Crenavolva tokuoi	Azuma, 1989	25		AY161390	AY161623
Prionovolva brevis	Sowerby I, 1828	23		AY161391	AY161624
Serratovolva dondani	Cate, 1964	23		AY161392	AY161625
Phenacovolva tokioi	Cate, 1973	26		AY161393	AY161626
Crenavolva cf rosewateri	Cate, 1973	25		AY161394	AY161627
2. Volva volva	Linnaeus, 1758	22		AY534352	AY534429
Phenacovolva weaveri	Cate, 1973	25		AY161395	AY161628
3. Primovula concinna	Adams & Reeve, 1848	57		AY534353	AY534430
4. Dentiovula takeoi	Cate & Azuma, 1973	3		AY534354	AY534431
5. Prosimnia semperi	Weinkauff, 1881	57		AY534355	AY534432
Adamantia florida	Kuroda, 1958	25		AY161396	AY161629
Calpumus verrucosus	Linnaeus, 1758	30		AY161397	AY161630
Calpurnus lacteus	Lamarck, 1810	59		AY161398	AY161631
Ovula ovum	Linnaeus, 1758	28		AY161399	AY161632
Cyphoma gibbosum	Linnaeus, 1758	83		AY161400	AY161633
Simnia aequalis	Sowerby I, 1832	78		AY161401	AY161634

INCREASED MOLECULAR SAMPLING IN CYPRAEIDAE

(continues)

147

OTUS Authors Authors Authors Authors Authors Authors Andersia surinamensis Cryptocypraea teramachii neocaledonica Cray, 1811 7. Nesiocypraea teramachii neocaledonica Cray, 1814 7. Nesiocypraea teramachii neocaledonica Gray, 1825 Cryptocypraea dilwyni Ras anulata Nucleolaria nucleus Nucleolaria nucleus Nucleolaria anucleus Nucleolaria anucleus Authora ataphylaea limacina interstincta Lamarck, 1810 Staphylaea limacina interstincta Eamarck, 1810 Staphylaea limacina interstincta Staphylaea staphylaea staphylaea limacina interstincta Staphylaea stap	100 32 100 32	Sampled localities* INGROUPS 9, 64 9, 64 9, 53, 64, 69 3, 30, 51 8, 30, 51 8, 30, 51 8, 10, 30, 52, 68	16S AY534356 AY534356 AY161411 AY161411 AY161412 AY161412 AY161413 AY161414 AY161415 AY161416 AY161416 AY161416	COI AY534433 AY534433 AY161650 AY161650 AY161651 AY161644 AY161644 AY161644 AY161648 AY161648 AY161648 AY161648 AY161639 AY161639
6. Propustularia surinamensisPerry, 18116. Propustularia surinamensis6. Propustularia surinamensis7. Nesiocypraea teramachii neocaledonicaLorenz, 20027. Nesiocypraea teramachii neocaledonicaCorptocypraea teramachii neocaledonica1psa childreni7. Nesiocypraea teramachii neocaledonica1psa childreniCryptocypraea teramachii neocaledonica1psa childreniSchildreni1psa childreniSchildreni1psa childreniSchildreni1psa childreniSchildreni1psa childreniSchildreni1psa childreniNucleolaria granulataNucleolaria granulataWood, 1828Staphylaea limacina limacinaLamarck, 1810Staphylaea staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaeaLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisCaputserpentisMonetaria caputserpentisCaputserpentisMonetaria caputserpentisCaputserpentisB. Erosaria helvolaBillwyn, 1827Garia aratinaeusLinnaeus, 1758Frusaria helvolaLinnaeus, 1758Frusaria helvolaLinnaeus, 1758Frusaria caputaraLinnaeus, 1758Frusaria caputserpentisLinnaeus, 1758Frusaria helvolaLinnaeus, 1758Frusaria helvolaLinnaeus, 1758	4003340 20 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	INGROUPS 3 9, 64 9, 64 3, 30, 51 3, 30, 51 8 0, 51, 52, 53, 59 0, 51, 52, 53, 59 3, 10, 30, 52, 68	AY534356 AY534357 AY161404 AY161411 AY161411 AY161413 AY161413 AY161413 AY161414 AY161415 AY161415 AY161415 AY161405	AY534433 AY534434 AY161637 AY161651 AY161651 AY161645 AY161645 AY161645 AY161645 AY161648 AY161648 AY161648 AY161638
6. Propustularia surinamensisPerry, 18117. Nesiocypraea teramachii neocaledonicaLorenz, 2002Ipsa childreniJpsa childreni1psa childreni1825Cryptocypraea dillwyniCryptocypraea dillwyniNucleolaria nucleusSchilder, 1922Nucleolaria nucleusNucleolaria granulataStaphylaea limacina interstinctaLimaeus, 1758Staphylaea limacina interstinctaLamarck, 1810Staphylaea staphylaea staphylaeaNood, 1828Staphylaea staphylaea staphylaeaLimaeus, 1758Monetaria annulusLimaeus, 1758Monetaria caputserpentisMelvill, 1888Perseria anarginalisGray, 1827B. Erosaria marginalisLimaeus, 1758Frusaria citrinaLimaeus, 1758Frusaria citrinaLimaeus, 1758Frusaria citrinaLimaeus, 1758Frusaria citrinaLimaeus, 1758Frusaria citrinaLimaeus, 1758Frusaria citrinaLimaeus, 1758	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 9, 64 9, 64 3, 30, 51 3, 30, 51 6, 5, 10, 30, 52, 68 3, 10, 30, 52, 68	AY534356 AY534357 AY161414 AY161411 AY161417 AY161418 AY161418 AY161414 AY161415 AY161415 AY161416 AY161416 AY161416	AY534433 AY534434 AY161637 AY161644 AY161646 AY161646 AY161646 AY161646 AY161648 AY161648 AY161648 AY161648 AY161648
7. Nesiocypraea teramachii neocaledonicaLorenz, 2002Ipsa childreniIpsa childreniGray, 1825Cryptocypraea dillwyniSchildren, 1922Cryptocypraea dillwyniSchildren, 1922Nucleolaria nucleusNucleolaria granulataNucleolaria granulataWood, 1828Staphylaea limacina interstinctaLamarck, 1810Staphylaea staphylaea staphylaeaLamarck, 1810Staphylaea staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaeaStaphylaeaStaphylaea staphylaeaLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria caputserpentis caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputataLinnaeus, 1758Monetaria caputataLinnaeus, 1758Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1758Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1927Monetaria caputserpentisChilder, 1758Fursaria helvolaChilder, 1927B. Erosaria helvolaChilder, 1927B. Erosaria helvolaChilder, 1927B. Erosaria helvola	4 0 0 7 7 0 0 7 0 2 7 7 2 2 7 2 2 2 7 2 2 2 2	3 9, 64 5, 53, 64, 69 3, 30, 51 8, 5, 8, 10, 30, 52, 68 3, 10, 30, 52, 68	AY161404 AY161404 AY161404 AY161411 AY161418 AY161413 AY161413 AY161415 AY161415 AY161415 AY161405	AY53434 AY161637 AY161637 AY161651 AY161651 AY161645 AY161645 AY161648 AY161648 AY161638 AY161638
Ipsa childreniGray, 1825Cryptocypraea dillwyniCryptocypraea dillwyniNucleolaria nucleusSchilder, 1922Nucleolaria anucleusNucleolaria granulataNucleolaria granulataWood, 1828Staphylaea limacina interstinctaLinnaeus, 1758Staphylaea limacina interstinctaLamarck, 1810Staphylaea staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaeaLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria caputserpentis caputserpentisSchilder, 1927Monetaria caputserpentisCinnaeus, 1758Monetaria caputserpentisMelvill, 1888Perisserosa guttataLinnaeus, 1758Monetaria caputserpentisCinnaeus, 1758Frosaria helvolaCinnaeus, 1758Frosaria helvolaCinnaeus, 1758Frosaria helvola <t< td=""><td>2,28 2,28 2,28 2,28 3,3 3,29 3,20 3,20 3,20 3,20 3,20 3,20 3,20 3,20</td><td>9, 64 5 3, 64, 69 3 30, 51 8 5, 8, 10, 30, 52, 68 3 10, 30, 52, 68</td><td>AY161404 AY161404 AY161411 AY161418 AY161412 AY161413 AY161415 AY161415 AY161415 AY161405 AY161405</td><td>AY161637 AY161644 AY161650 AY161651 AY161645 AY161645 AY161648 AY161648 AY161648 AY161638</td></t<>	2,28 2,28 2,28 2,28 3,3 3,29 3,20 3,20 3,20 3,20 3,20 3,20 3,20 3,20	9, 64 5 3, 64, 69 3 30, 51 8 5, 8, 10, 30, 52, 68 3 10, 30, 52, 68	AY161404 AY161404 AY161411 AY161418 AY161412 AY161413 AY161415 AY161415 AY161415 AY161405 AY161405	AY161637 AY161644 AY161650 AY161651 AY161645 AY161645 AY161648 AY161648 AY161648 AY161638
Cryptocypraea dillwyniSchilder, 1922Nucleolaria nucleusNucleolaria nucleusNucleolaria nucleusNucleolaria anucleusNucleolaria granulataNucleolaria granulataNucleolaria granulataNucleolaria granulataStaphylaea limacina interstinctaLamarck, 1810Staphylaea staphylaea staphylaeaLamarck, 1810Staphylaea staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaea staphylaeaLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria caputserpentis caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisLinnaeus, 1758Persserosa guttataLinnaeus, 1758Frosaria helvolaLinnaeus, 1758Frosaria helvolaLinnaeus, 1758	2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2 2,2	9 , 53, 64, 69 3, 30, 51 8, 51, 52, 53, 59 3, 51, 10, 30, 52, 68	AY161411 AY161417 AY161418 AY161418 AY161413 AY161414 AY161415 AY161415 AY161416 AY161416 AY161416	AY161644 AY161650 AY161651 AY161645 AY161645 AY161648 AY161648 AY161648 AY161633 AY161633
Nucleolaria nucleusLinnaeus, 1758Nucleolaria aucleusNucleolaria aucleusNucleolaria granulataNucleolaria granulataStaphylaea limacina interstinctaUood, 1828Staphylaea limacina interstinctaLamarck, 1810Staphylaea staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaea staphylaeaLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria caputserpentis caputserpentisSchilder, 1927Monetaria caputserpentisCinnaeus, 1758Monetaria caputserpentisCinnaeus, 1758Prisserosa guttataCinnaeus, 1758B. Erosaria helvolaLinnaeus, 1758Frusaria citrinaLinnaeus, 1758	28 28 28 28 28 28 28 28 28 28 28 28 28 2	, 53, 64, 69 3 3, 30, 51 6, 51, 52, 53, 59 3 3, 10, 30, 52, 68	AY161417 AY161418 AY161418 AY161413 AY161414 AY161415 AY161415 AY161405	AY161650 AY161651 AY161645 AY161646 AY161647 AY161648 AY161648 AY161648
Nucleolaria granulataPease, 1862Staphylaea limacina interstinctaWood, 1828Staphylaea limacina interstinctaWood, 1828Staphylaea staphylaea staphylaeaLamarck, 1810Staphylaea staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria annulusLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisCenlider, 1758Monetaria caputserpentisCenlider, 1758Prisserosa guttataCensiri, 1761B. Erosaria marginalisCaputserpentisB. Erosaria helvolaLinnaeus, 1758Frusaria citrinaLinnaeus, 1758	28 28 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	3 9 51 3, 30, 51 6, 51, 52, 53, 59 3 10, 30, 52, 68	AY161418 AY161412 AY161413 AY161414 AY161415 AY161415 AY161405	AY161651 AY161645 AY161646 AY161647 AY161648 AY161648 AY161648 AY161638
Staphylaea limacina interstinctaWood, 1828Staphylaea limacina limacinaLamarck, 1810Staphylaea staphylaea staphylaeaLamarck, 1810Staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaeaMighels, 1845Monetaria annulusMighels, 1845Monetaria annulusLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisCenlider, 1927Monetaria caputserpentisCenlider, 1927Monetaria caputserpentisCenlider, 1927Monetaria caputserpentisCenlider, 1927Monetaria caputserpentisLinnaeus, 1758Persserosa guttataCensin, 1731B. Erosaria marginalisCensin, 1791B. Erosaria helvolaLinnaeus, 1758Frusaria helvolaLinnaeus, 1758	7 9 9 9 3 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	,9 3, 30, 51 6, 51, 52, 53, 59 3 5, 8, 10, 30, 52, 68	AY161412 AY161413 AY161414 AY161415 AY161416 AY161416 AY161405	AY161645 AY161646 AY161647 AY161648 AY161648 AY161648 AY161638 AY161638
Staphylaea limacinaLamarck, 1810Staphylaea staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaLinnaeus, 1758Monetaria annulusMighels, 1845Monetaria annulusLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisCaputserpentisMonetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1758Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1758Monetaria caputserpentisCimaeus, 1758Monetaria caputserpentisCimaeus, 1758Perisserosa guttataCenai, 1791B. Erosaria marginalisCenai, 1758B. Erosaria helvolaLinnaeus, 1758Frusaria helvolaLinnaeus, 1758	7 5 5 5 5 5 5 2 7 7 7 7 7 7 7 7 7 7 7 7	3, 30, 51 , 8 0, 51, 52, 53, 59 3 , 5, 8, 10, 30, 52, 68	AY161413 AY161414 AY161415 AY161416 AY161405	AY161646 AY161647 AY161648 AY161648 AY161649 AY161639 AY161639
Staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaDautzenberg, 193Staphylaea staphylaeaLinnaeus, 1758Monetaria annulusMighels, 1845Monetaria annulusLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisLinnaeus, 1758Monetaria caputserpentisSchilder, 1927Monetaria caputserpentisCenilder, 1927Monetaria caputserpentisCenilder, 1937Monetaria caputserpentisCenilder, 1937Monetaria caputataCenilder, 1838Persserosa guttataGmelin, 1791B. Erosaria marginalisCeray, 1825Frosaria helvolaLinnaeus, 1758Frosaria helvolaLinnaeus, 1758	7 5 6 3 3 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	, 8 0, 51, 52, 53, 59 3 , 5, 8, 10, 30, 52, 68	AY161414 AY161415 AY161416 AY161405	AY161647 AY161648 AY161649 AY161649 AY161638 AY161639
Staphylaea staphylaeaLinnaeus, 1758Staphylaea staphylaeaLinnaeus, 1758Monetaria annulusMighels, 1845Monetaria annulusLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria monetaSchilder, 1927Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputserpentisCemider, 1927Monetaria caputserpentisCemider, 1927Monetaria caputserpentisCemider, 1927Monetaria caputataCemin, 1758Monetaria caputataCemin, 1758Persserosa guttataCemin, 1751B. Erosaria marginalisCemin, 1751B. Erosaria citrinaLinnaeus, 1758Frusaria helvola helvolaLinnaeus, 1758	7 22 22 28 2 28 0 3 7 28 2 28 0 3 7 29	0, 51, 52, 53, 59 3 , 5, 8, 10, 30, 52, 68	AY161415 AY161416 AY161405	AY161648 AY161649 AY161638 AY161638
Staphy/aea semiplotaMighels, 1845Monetaria annulusLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria obvelataLinnaeus, 1758Monetaria caputserpentis caputophidiiSchilder, 1927Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputserpentis caputserpentisMelvill, 1888Monetaria caputserpentisGmelin, 1791Berisserosa guttataGmelin, 1791Berisseria and citrinaLinnaeus, 1758Frosaria marginalisCaputserpentisErosaria citrinaLinnaeus, 1758	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 , 5, 8, 10, 30, 52, 68	AY161416 AY161405	AY161649 AY161638 AY161639
Monetaria annulusLinnaeus, 1758Monetaria obvelataLamarck, 1810Monetaria obvelataLamarck, 1810Monetaria caputserpentis caputophidiiSchilder, 1927Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputserpentis caputserpentisChinaeus, 1758Monetaria caputserpentisChinaeus, 1758Monetaria caputataGmelin, 1991B. Erosaria marginalisDillwyn, 18279. Erosaria helvola helvolaLinnaeus, 1758	58 10 58 7 7	, 5, 8, 10, 30, 52, 68	AY161405	AY161638 AY161639
Monetaria obvelataLamarck, 1810Monetaria caputserpentis caputophidiiLinnaeus, 1758Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputraconisMelvili, 1888Perisserosa guttataGmelin, 17918. Erosaria marginalisDillwyn, 18259. Erosaria helvola helvolaLinnaeus, 1758	10 6 58 57			AY161639
Monetaria moneta Linnaeus, 1758 Monetaria caputserpentis caputophidii Schilder, 1927 Monetaria caputserpentis caputserpentis Linnaeus, 1758 Monetaria caputaconis Melvili, 1888 Perisserosa guttata Gmelin, 1791 8. Erosaria marginalis Dillwyn, 1827 9. Erosaria helvola helvola Linnaeus, 1758	58 57 57	o, oy, ru	AY1614U6	
Monetaria caputserpentis caputophidiiSchilder, 1927Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputdraconisMelvili, 1888Perisserosa guttataGmelin, 17918. Erosaria marginalisDillwyn, 18279. Erosaria citrinaLinnaeus, 1758Frosaria helvola helvolaLinnaeus, 1758	7 70	, 8, 30, 71, 59	AY161407	AY161640
Monetaria caputserpentis caputserpentisLinnaeus, 1758Monetaria caputdraconisMelvill, 1888Perisserosa guttataGmelin, 17918. Erosaria marginalisDillwyn, 18279. Erosaria citrinaLinnaeus, 1758Frosaria helvolaLinnaeus, 1758	-		AY161409	AY161642
Monetaria caputdraconis Melvill, 1888 Perisserosa guttata Gmelin, 1791 8. Erosaria marginalis 9. Erosaria citrina 9. Erosaria helvola helvola	58 5	, 19, 59, 66, 71, 91	AY161408	AY161641
Perisserosa guttata Gmelin, 1791 8. Erosaria marginalis Dillwyn, 1827 9. Erosaria citrina Gray, 1825 Frosaria helvola helvola	2	5	AY161410	AY161643
8. Erosaria marginalis 9. Erosaria citrina Frosaria helvola Innaeus 1758	1	5	AY161419	AY161652
9. Erosaria citrina Erosaria helvola delvola Linnaeus 1758	7 5	, 108	AY534358	AY534435
Erosaria helvola helvola	F	00, 101	AY534359	AY534436
	58	, 10, 30, 53, 59, 69, 70	AY161429	AY161662
Erosaria helvola hawaiiensis Melvill, 1888	2	0	AY161430	AY161663
10. Erosaria helvola cf. callista Shaw, 1909	-	-	AY534360	AY534437
Erosaria turdus Lamarck, 1810	10	,2	AY161420	AY161653
11. Erosaria irrorata Gray, 1828	9	9, 70	AY534361	AY534438
Erosaria albuginosa Gray, 1825	2	D	AY161427	AY161660
Erosaria poraria Linnaeus, 1758	58 1	9, 59, 69	AY161428	AY161661
Erosaria beckii Gaskoin, 1836	36 5	9, 23, 31	AY161425	AY161658
12. Erosaria macandrewi Sowerby II, 1870	1870 1		AY534362	AY534439
13. Erosaria englerti Summers & Buro	Burgess, 1965 7	Q	AY534363	AY534440

(continued)

MEYER

			Acces	sion #
OTUS	Authors	Sampled localities*	16S	COI
Erosaria kingae	Rehder & Wilson, 1975	74	AY161424	AY161657
Erosaria thomasi	Crosse, 1865	71	AY161426	AY161659
Erosaria cernica	Sowerby II, 1870	38, 73	AY161423	AY161656
Erosaria spurca	Linnaeus, 1758	84, 85, 86	AY161421	AY161654
Erosaria acicularis	Gmelin, 1791	83	AY161422	AY161655
Erosaria labrolineata	Gaskoin, 1849	52, 25	AY161433	AY161666
Erosaria boivinii	Kiener, 1843	20, 23	AY161434	AY161667
Erosaria ocellata	Linnaeus, 1758	2, 12	AY161431	AY161664
Erosaria gangranosa	Dillwyn, 1817	14	AY161432	AY161665
Erosaria lamarckii cf redimita	Melvill, 1888	14	AY161437	AY161670
14. Erosaria lamarckii lamarckii	Gray, 1825	5	AY534364	AY534441
Erosaria miliaris	Gmelin, 1791	15, 33	AY161435	AY161668
Erosaria eburnea	Barnes, 1824	54, 55	AY161436	AY161669
Errosaria nebrites	Melvill, 1888	1, 2	AY161438	AY161671
Erosaria erosa (Indian)	Linnaeus, 1758	5, 8, 10, 14	AY161440	AY161673
Erosaria erosa (Pacific) cf. chlorizans	Melvill, 1888	19, 30, 59, 69	AY161439	AY161672
Umbilia armeniaca	Verco, 1912	43, 44, 45	AY161493	AY161726
Umbilia hesitata	Iredale, 1916	48, 49	AY161492	AY161725
Umbilia capricornica	Lorenz, 1989	50	AY161494	AY161727
15. Umbilia cf. petilirostris	Darragh, 2002	50	AY534365	AY534442
Macrocypraea cervinetta	Kiener, 1843	79	AY161485	AY161718
Macrocypraea cervus	Linnaeus, 1771	83, 82	AY161486	AY161719
Macrocypraea zebra	Linnaeus, 1758	82, 83	AY161487	AY161720
Leporicypraea valentia	Perry, 1811	25	AY161484	AY161717
Leporicypraea mappa rosea	Gray, 1824	ω	AY161480	AY161713
16. Leporicypraea mappa aliwalensis	Lorenz, 2002	101	AY534366	AY534443
Leporicypraea mappa mappa	Linnaeus, 1758	22, 23, 98	AY161481	AY161714
Leporicypraea geographica	Schilder & Schilder, 1933	5, 10, 14, 32, 54, 56, 57, 98	AY161482	AY161715
Leporicypraea mappa panerythra-viridis	Melvill, 1888; Kenyon, 1902	55, 57, 59, 64	AY161479	AY161712
Leporicypraea mappa viridis admirabilis	Kenyon, 1902; Lorenz, 2002	71	AY161483	AY161716
Mauritia scurra indica	Gmelin, 1791	30, 59, 71	AY161477	AY161710
Mauritia scurra scurra	Gmelin, 1791	5, 10	AY161478	AY161711

149

			Acces	ssion #
OTUS	Authors	Sampled localities*	16S	COI
Mauritia mauritiana	Linnaeus, 1758	5, 19, 52, 70	AY161474	AY161707
Mauritia depressa dispersa	Schilder & Schilder, 1939	10, 19	AY161475	AY161708
Mauritia depressa depressa	Gray, 1824	59, 64, 69	AY161476	AY161709
Mauritia grayana	Schilder, 1930	2,3	AY161467	AY161700
Mauritia eglantina	Dulcos, 1833	32, 52, 59, 64	AY161469	AY161702
Mauritia histrio	Gmelin, 1791	5, 9, 19	AY161470	AY161703
Mauritia arabica arabica	Linnaeus, 1758	19, 21, 22, 23, 25, 29, 30, 32, 33, 52, 55, 56, 59, 61, 63, 64	AY161465	AY161698
17. Mauritia arabica arabica (Am. Samoa)		67	AY534367	АҮ534444
Mauritia arabica asiatica	Schilder & Schilder, 1939	2, 11, 13, 15, 19, 23, 29, 30	AY161466	AY161699
Mauritia arabica immanis		5, 7, 8	AY161468	AY161701
Mauritia maculifera (Marquesas) martybealsi	Lorenz, 2002	71	AY161472	AY161705
Mauritia maculifera (N. Pacific) maculifera	Schilder, 1932	59, 66, 73	AY161471	AY161704
Mauritia maculifera (Polynesia) scindata	Lorenz, 2002	69, 70	AY161473	AY161706
18. Barycypraea teulerei	Cazenavette, 1846	.0	AY534368	AY534445
19. Barycypraea fultoni	Sowerby III, 1903	106	AY534369	AY534446
Zoila marginata marginata	Gaskoin, 1849	43, 44, 45, 46	AY161495	AY161728
20. Zoila marginata ketyana	Raybaudi, 1978	38, 39, 40	AY534370	AY534447
Zoila rosselli	Cotton, 1948	37, 38, 39, 40, 41, 42, 43	AY161497	AY161730
Zoila venusta	Sowerby II, 1846	39, 40, 41, 43	AY161496	AY161729
Zoila eludens	Raybaudi, 1991	35	AY161499	AY161732
Zoila decipiens	Smith, 1880	33, 34	AY161498	AY161731
21. Zoila mariellae	Raybaudi, 1983	32 (?)	AY534371	AY534448
Zoila thersites	Gaskoin, 1849	45, 46	AY161503	AY161736
Zoila jeaniana sherlyae	Raybaudi, 1990	37	AY161500	AY161733
Zoila jeaniana jeaniana	Cate, 1968	36	AY161501	AY161734
Zoila friendii friendii	Gray, 1831	39, 40, 41, 42, 43	AY161502	AY161735
Muracypraea mus	Linnaeus, 1758	81	AY161491	AY161724
Cypraea tigris (Indian)	Linnaeus, 1758	3, 5, 8, 9, 10, 14	AY161489	AY161722
Cypraea tigris (Pacific)		15, 18, 19, 23, 30, 32, 33, 52, 56, 57, 59, 60, 61, 62, 63, 64, 69, 70, 73	AY161488	AY161721
Cypraea pantherina	Lightfoot, 1786		AY161490	AY161723

(continued)

ssion #	COI	AY161697	A1334449	AV161694	AY161696	AY161693	AY161691	AY161692	AY161676	AY161674	AY161675	AY161677	AY161681	AY161678	AY534450		AY534451	AY161679	AY161680	AY161682	AY161685	AY534452	AY161683	AY534453	AY161684	AY161689	AY161690	AY161686	AY161687	AY161688	AY161740	AY161741
Acces	16S	AY161464	A13343/2	AV161461	AY161463	AY161460	AY161458	AY161459	AY161443	AY161441	AY161442	AY161444	AY161448	AY161445	AY534373		AY534374	AY161446	AY161447	AY161449	AY161452	AY534375	AY161450	AY534376	AY161451	AY161456	AY161457	AY161453	AY161454	AY161455	AY161507	AY161508
	Sampled localities*	5, 30, 64	4 84 86 87	83 82 105	2	73	5, 8, 9, 20, 30, 65, 69, 73, 98	76, 79	59, 64, 70	87	5, 59, 64	41, 45	97	30, 59	10		101	13, 14	23, 57	59, 54	59, 69, 70	19	73	20	69, 70, 73	9, 30, 69, 5	5, 8, 30	5, 20, 55, 59, 69, 73	1, 9, 13, 20, 30, 52, 53, 55, 59, 69	69, 71	59	5, 10
	Authors	Linnaeus, 1758	JUNNERINY I, 1032	Gmelin 1791	Grav, 1824	Swainson, 1822	Linnaeus, 1758	Stearns, 1893	Schilder, 1927	Linnaeus, 1758	Linnaeus, 1758	Sowerby I, 1832	Cate, 1966	Linnaeus, 1758	Perry, 1811		Sowerby I, 1832	Broderip, 1827	Broderip, 1827	Gmelin, 1791	Lamarck, 1810		Gray, 1824	Kuroda & Habe, 1961	Iredale, 1939	Linnaeus, 1758	Linnaeus, 1758	Schilder & Schilder, 1937	Linnaeus, 1758	Garrett, 1879	Linnaeus, 1758	Schilder & Schilder, 1938
	OTUS	Talparia talpa	22. I alparta exusta I uria lurida	Luria cinerea	Luria pulchra	Luria tessellata	Luria isabella	Luria isabellamexicana	Annepona mariae	Trona stercoraria	Chelycypraea testudinaria	Lyncina (Austrocypraea) reevei	Lyncina (cf. Miolyncina) porteri	Lyncina (Arestoides) argus argus	23. Lynicna (Arestoides) argus	contrastriata	24. Lyncina (Callistocypraea) broderipii	Lyncina (Callistocypraea) nivosa	Lyncina (Callistocypraea) leucodon	Lyncina (Callistocypraea) aurantium	Lyncina ventriculus	25. Lyncina ventriculus (Xmas IO)	Lyncina sulcidentata	26. Lyncina kuroharai	Lyncina schilderorum	Lyncina lynx	Lyncina vitellus	Lyncina leviathan	Lyncina carneola	Lyncina propingua	Pustularia globulus globulus	Pustularia globulus brevirostris

151

(continues)

			Acces	sion #
OTUS	Authors	Sampled localities*	16S	COI
Pustularia bistrinotata bistrinotata	Schilder & Schilder, 1937	27, 59, 64	AY161504	AY161737
27. Pustularia bistrinotata keelingensis	Schilder & Schilder, 1940	98	AY534377	AY534454
28. Pustularia bistrinotata sublaevis	Schilder & Schilder, 1938	69, 70	AY534378	AY534455
Pustularia mauiensis	Burgess, 1967	73	AY161505	AY161738
Pustularia cicercula	Linnaeus, 1758	5, 14, 59, 64, 69	AY161506	AY161739
Pustularia margarita	Dillwyn, 1817	59	AY161509	AY161742
Neobernava spadicea	Swainson, 1823	77	AY161517	AY161750
Pseudozonaria annettae	Dall, 1909	78	AY161518	AY161751
Pseudozonaria arabicula	Lamarck, 1810	79	AY161519	AY161752
29. Pseudozonaria nigropunctata	Gray, 1828	06	AY534379	AY534456
Pseudozonaria robertsi	Hildalgo, 1906	80	AY161520	AY161753
30. Schilderia achatidea	Sowerby I, 1837	84	AY534380	AY534457
Zonaria sanguinolenta	Gmelin, 1791	87	AY161512	AY161745
31. Zonaria picta	Gray, 1824	86	AY534381	AY534458
Zonaria zonaria	Gmelin, 1791	87	AY161513	AY161746
Zonaria pyrum senegalensis	Schilder, 1928	87	AY161510	AY161743
Zonaria pyrum angolensis	Odhner, 1923	88	AY161511	AY161744
32. Zonaria pyrum angelicae	Clover, 1974	87	AY534382	AY534459
33. Notocypraea hartsmithi	Schilder, 1967	96	AY534383	AY534460
Notocypraea piperita	Gray, 1847	41, 43, 45, 48	AY161524	AY161757
Notocypraea pulicaria	Reeve, 1846	41	AY161525	AY161758
Notocypraea comptoni	Gray, 1847	43, 45, 47, 48, 49	AY161521	AY161754
Notocypraea angustata (Gmelin, 1791	47, 48	AY161522	AY161755
34. Notocypraea angustata (Port Lincoln)		45	ΑΥ534384	AY534461
Notocypraea declivis	Sowerby II, 1870	47, 48	AY161523	AY161756
Cypraeovula connelli	Liltved, 1983	102	AY161527	AY161760
Cypraeovula castanea	Higgins, 1868	Q	AY161526	AY161759
Cypraeovula iutsui	Shikama, 1974	102	AY161528	AY161761
Cypraeovula capensis	Gray, 1828	102	AY161530	AY161763
35. Cypraeovula fuscorubra	Shaw, 1909	6	AY534385	AY534462
36. Cypraeovula fuscodentata	Gray, 1825	6	AY534386	AY534463
Cypraeovula coronata	Schilder, 1930	102	AY161529	AY161762

_
0
Φ
3
2.
12
2
8
2

			Acces	ssion #
OTUs	Authors	Sampled localities*	16S	COI
37. Cyp raeov <i>u</i> la <i>mik</i> eharti	Lorenz, 1985	9	AY534387	AY534464
38. Cypraeovula algoensis	Gray, 1825	9	AY534388	AY534465
Cypraeovula edentula	Gray, 1825	102	AY161531	AY161764
Cypraeovula alfredensis	Schilder & Schilder, 1929	102	AY161532	AY161765
Palmadusta contaminata distans	Schilder & Schilder, 1938	Q	AY161555	AY161789
Palmadusta contaminata contaminata	Sowerby I, 1832	25, 32, 71	AY161556	AY161790
Palmadusta asellus cf. bitaeniata	Geret, 1903	30, 63	AY161543	AY161777
Palmadusta asellus cf. asellus	Linnaeus, 1758	5	AY161545	AY161779
Palmadusta asellus cf. vespacea	Melvill, 1905	10, 23, 25	AY161544	AY161778
Palmadusta saulae	Gaskoin, 1843	13, 20	AY161554	AY161788
Palmadusta lentiginosa	Gray, 1825	3, 11	AY161557	AY161791
Palmadusta humphreysii	Gray, 1825	55, 51	AY161550	AY161784
Palmadusta lutea	Gmelin, 1791	23, 64	AY161549	AY161783
Palmadusta ziczac ziczac	Linnaeus, 1758	25, 54	AY161552	AY161786
Palmadusta ziczac misella	Perry, 1811	5	AY161553	AY161787
Palmadusta diluculum	Reeve, 1845	5, 10	AY161558	AY161792
Palmadusta clandestina passerina	Melvill, 1888	3, 5, 10, 8	AY161548	AY161782
39. Palmadusta clandestina cf. clandestina	Linnaeus, 1758	14	AY534389	AY534466
(Andaman)				
Palmadusta artuffeli	Jousseaume, 1876	20	AY161546	AY161780
Palmadusta clandestina clandestina cf.	Pease, 1865	23, 30, 33, 38, 53, 55, 59, 64, 28	AY161547	AY161781
canada Distributo statisto statisto				
bistolida stolida	Linnaeus, 1/58	24, 32, 55, 59, 23, 51, 64	AY161536	AY161770
Bistolida stolida clavicola	Melvill, 1888	Ð	AY161534	AY161768
40. Bistolida stolida diagues	Me/vi/l, 1888	10	AY534390	AY534467
Bistolida stolida rubiginosa	Gmelin, 1791	30	AY161535	AY161769
Bistolida enythraeensis	Sowerby I, 1837	4	AY161533	AY161767
41. Bistolida owenii	Sowerby I, 1837	100	AY534391	AY534468
Bistolida goodallii	Sowerby I, 1832	69, 72	AY161537	AY161771
Bistolida hirundo	Linnaeus, 1758	14, 15, 52, 53, 55, 59, 12	AY161539	AY161773
Bistolida ursellus	Gmelin, 1791	25, 59	AY161541	AY161775
42. Bistolida ursellus (Andaman)		14	AY534392	AY534469

153

			Acces	sion #
OTUS	Authors	Sampled localities*	16S	COI
Bistolida kieneri kieneri	Hidalgo, 1906	5, 8, 9	AY161542	AY161776
Bistolida kieneri depriesteri A	Schilder, 1933	29, 52	AY161540	AY161774
Bistolida kieneri depriesteri B		19, 28, 29	AY161538	AY161772
Ovatipsa chinensis chinensis	Gmelin, 1791	5, 25, 29	AY161559	AY161793
43. Ovatipsa chinensis amiges	Melvill & Standen, 1904	38, 53, 59, 73, 23	AY534393	AY534470
Ovatipsa coloba	Melvill, 1888	14, 3	AY161560	AY161794
Talostolida teres	Gmelin, 1791	53, 59, 69, 98	AY161561	AY161795
Talostolida pellucens	Melvill, 1888	5, 14, 19, 30, 38, 59, 64, 73, 76, 80, 71	AY161562	AY161796
44. Talostolida subteres	Weinkauff, 1881	10	AY534394	AY534471
45. Talostolida latior	Melvill, 1888	73	AY534395	AY534472
Cribrarula gaskoini	Reeve, 1846	73	AY161572	AY161806
Cribrarula catholicorum	Schilder & Schilder, 1938	54	AY161575	AY161809
46. Cribrarula taitae	Burgess, 1993	67	AY534396	AY534473
Cribrarula cumingii	Sowerby I, 1832	69, 70	AY161573	AY161807
47. Cribrarula garciai	Lorenz & Raines, 2001	75		AY534474
Cribrarula astaryi	Schilder, 1971	71	AY161574	AY161808
Cribrarula cribraria comma	Perry, 1811	5	AY161565	AY161799
48. Cribrarula pellisserpentis	Lorenz, 1999	100	AY534397	AY534475
49. Cribrarula esontropia francescoi	Lorenz, 2002	100	AY534398	AY534476
Cribrarula cribellum	Gaskoin, 1849	2	AY161563	AY161797
Cribrarula esontropia	Duclos, 1833	7	AY161564	AY161798
Cribrarula fallax	Smith, 1881	41	AY161569	AY161803
Cribrarula cribraria (Andaman) australiensis	Lorenz, 2002	14, 38	AY161567	AY161801
50. Cribrarula cribraria cf. abaliena	Lorenz, 1989	°	AY534399	AY534477
Cribrarula gaspardi	Biraghi, &, Nicolay, 1993	64	AY161570	AY161804
Cribrarula eribraria exmouthensis	Melvill, 1888	35	AY161571	AY161805
51. Cribrarula exmouthensis magnifica	Lorenz, 2002	33	AY534400	AY534478
Cribrarula cribraria cribraria	Linnaeus, 1758	15, 24, 38, 52, 53, 55, 59, 23, 50, 98	AY161566	AY161800
52. Cribrarula cribraria melwardi	Iredale, 1930	50	AY534401	AY534479
Cribrarula cribraria rottnestensis	Raybaudi, 1987	40	AY161568	AY161802
53. Cribrarula cribraria abrolhensis	Lorenz, 2002	38	AY534402	AY534480
Nesiocypraea Austrasiatica langfordi	Kuroda, 1938	<u>9</u> 3	AY161516	AY161749

(continued)

	Authors	Sampled localities*	16S	CO
Rober	te 1013	25	AV164644	AV164747
Habe.	1970	25	AY161515	AY161748
Kurod	a, 1960	25	AY161584	AY161818
Kurod	Ja & Habe, 1961	55	AY534403	AY534481
Sowel	rby I, 1832	51	AY534404	AY534482
Gray,	1824	16	AY534405	AY534483
Schilc	der, 1927	104	AY534406	AY534484
Schilc	der, 1964	95	AY534407	AY534485
Cate,	1969	109	AY534408	
Linnae	eus, 1758	3, 14, 20, 57, 11	AY161608	AY161842
Lamar	rck, 1810	5, 9	AY161610	AY161844
Reeve	e, 1835	55, 51	AY161612	AY161846
Schild	er, 1937	54	AY161609	AY161843
Schild	er & Schilder, 1938	33, 38	AY161611	AY161845
Bray,	1824	107	AY534409	AY534486
3orn,	1778	16, 24, 30, 33, 59	AY161607	AY161841
redal	e, 1939	55	AY534410	AY534487
imeli	in, 1791	16, 23	AY534411	AY534488
Schild	er & Schilder, 1938	57	AY161601	AY161835
innae	eus, 1758	11, 14, 16, 30, 52, 55, 57, 58, 33, 53, 56	AY161606	AY161840
Schild	er, 1927	53, 54	AY161600	AY161834
innae	eus, 1758	23, 30, 33, 38, 52, 53, 55, 64	AY161602	AY161836
Smelir	n, 1791	14, 11	AY161603	AY161837
3orn,	1778	9, 10	AY161604	AY161838
Rodine	g, 1798	1, 3, 5	AY161605	AY161839
Perry,	, 1811	5	AY534412	AY534489
			AY534413	AY534490
		3, 11	AY534414	AY534491
Loren	z, 2002	55, 67	AY534415	AY534492
Schild	er & Schilder, 1938	69, 71	AY161578	AY161812
Melvill	, 1901	14, 32, 31, 98	AY161577	AY161811
Loren	z & Sterba, 1999	69, 70	AY534416	AY534493

155

Accession #	SS COI	01576 AY161810	14417 AY534494	31579 AY161813	31581 AY161815	31580 AY161814	31582 AY161816	31583 AY161817	34418 AY534495	34419 AY534496	31598 AY161832	31599 AY161833	34420 AY534497	34421 AY534498	34422	31590 AY161824	31589 AY161823	34423 AY534499	31588 AY161822	31587 AY161821	31586 AY161820	31585 AY161819	34424 AY534500	34425 AY534501	31596 AY161830	31591 AY161825	31592 AY161826	31597 AY161831	31594 AY161828	31593 AY161827	34426 AY534502	31595 AY161829	AVESTED
	es* 1(AY16	AY5:	AY16	AY16	51 AY16	AY16	23, 61, 70 AY16	AY5:	АУ5:	AY16	AY16	AY5:	AY5:	ΑΥ5:	AY16	AY16	AY5:	AY16	AY16	AY16	AY16	AY5:	AY5:	AY16	AY1(AY16	AY16	AY16	AY16	AY5:	AY16	AVE'
	Sampled localiti	52, 59, 56	5	23, 38, 98	3, 5	14, 15, 20, 28, 33, 59, 11,	5, 9, 14	30, 31, 59, 64, 69, 18, 19,	71	73	14, 23, 38, 98	54, 92	106	22	22	64	23, 52, 53, 55, 59, 64	69, 70	14	5	10	19, 30, 12	50	3, 5	24	33	16, 24, 27, 32, 52, 57	54	15, 17	32, 52, 54	67	14, 30, 12	
	Authors	Gray, 1828	Kiener, 1843	Iredale, 1939	Gill, 1858	Gaskoin, 1849	Gmelin, 1791	Mighels, 1845	Lorenz, 2002	Schilder, 1933	Sowerby I, 1832	Crosse, 1868	Reeve, 1857	Swainson, 1829	Sowerby III, 1888	Schepman, 1907	Linnaeus, 1771	Sowerby II, 1870		Dautzenberg, 1906		Gray, 1824	Hidalgo, 1906	Gmelin, 1791	Cate, 1963	Schilder & Schilder, 1938	Gray, 1824	Cox, 1873	Gaskoin, 1849	Souverbie, 1865	Steadman & Cotton, 1943	Gray, 1824	
	OTUS	n microdon microdon	łusta microdon chrysalis	hammondae	gracilis notata	a gracilis gracilis	a fimbriata fimbriata	a fimbriata unifasciata	dusta fimbriata marquesana	dusta fimbriata waikikiensis	walkeri	bregeriana	lusta? barclayi	lusta? pulchella	sta? hungerfordi	nartini	ounctata punctata	sta punctata trizonata	ounctata (Andaman)	unctata berinii A	unctata berinii B	listeri	ona listeri melvilli	ona felina	dayritiana	quadrimaculata thielei	quadrimaculata quadrimaculata	coxeni	allidula pallidula	allidula rhinoceros	ıra pallidula cf. vivia	nterrupta	

(continued)

MEYER